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“The world’s most valuable resource is no longer oil, but data”

Sam Jossen, The Economist, 2017 May 6th

1. Introduction

Data have become the most important asset in the digital era. Economic goods are usually

rivals, but data are nonrivals. Data can be used simultaneously by any number of economic agents

without being diminished. For example, multiple firms can use different algorithms to process

the same set of data at the same time to guide various economic decisions without reducing the

amount of data (Jones and Tonetti (2020)). The high economic value of data incentivizes many

companies to utilize their digital platforms to collect and commercialize individual data, leading

to unprecedented growth in the amount of data about individual preferences, social networks, and

political views.1 An increasing number of studies employ theoretical tools to examine the optimal

allocation of data control rights, shedding light on the welfare implications of the undersharing

or oversharing of data between individuals and platform companies (e.g., Bergemann and Bonatti

(2015); Choi et al. (2019); Jones and Tonetti (2020); Acemoglu et al. (2021); Bergemann et al.

(2021)).2 Unlike extant studies, this paper seeks to provide first-hand evidence on the implications

of data sharing for capital markets.

We focus on cookie networks and investigate the extent to which data sharing via cookies can

affect investor attention and return comovement, shedding light on the efficiency of the capital mar-

ket. Specifically, companies not only collect information on their customers to provide customized

services or more targeted advertisements but also allow data brokers and other companies to in-

stall cookies on their websites so they can obtain supplemental information to facilitate retargeting

advertisements and behavioral advertising (Bergemann and Bonatti (2019); Murgia and Harlow

(2019)).3 As a result, firms with common cookies could reach out to the same set of tracked users,

1Data vendor sales revenue is expected to reach $10.1 billion by 2022, more than triple the $3.1 billion observed
in 2017 (Ram and Murgia (2019)).

2The nonrival nature of data and their important positive externalities can lead to underinvestment in data sharing
(Jones and Tonetti (2020)). Another stream of studies incorporates the privacy cost of data sharing and speaks to
concerns regarding excessive data usage and diffusion (e.g., Bergemann and Bonatti (2015); Acemoglu et al. (2021)).
Such concerns have led to more stringent regulations, such as the General Data Protection Regulation (GDPR) in the
European Union and the California Consumer Privacy Act (CCPA) in the state of California in the United States.

3Much of this information is collected via cookies, which are designed to follow users across the internet and record
their browsing histories in real time to build a detailed, robust profile for each user.
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who receive ads on various products and services they might be interested in according to their

revealed profiles over time and recent search activities. We define firms that are connected through

the same cookie network as data-sharing firms.

Although online data collection and sharing primarily target consumers, the same attention

shocks can affect investors given their dual nature as consumers (e.g., Keloharju et al. (2012);

Liaukonytė and Žaldokas (2020)). For instance, when investors visit the website of one firm in a

specific cookie network, customized popup advertisements could direct them to other data-sharing

firms, leading to an upward shift in attention to previously overlooked data-sharing firms.

Within the framework of Barber and Odean (2008), attention affects individual investors’ buying

more than their selling. The underlying reason for this phenomenon is that when buying a stock,

investors need to choose from the entire universe of common stocks. Investors with bounded

rationality are not able to process and rank all available stocks; instead, they choose to purchase

stocks that have recently caught their attention (Odean (1999)). In contrast, investors’ attention

is not as constrained when selling because in the presence of short-sale constraints, most individual

investors can sell only the stocks that they already own, and they typically hold only a few stocks.

Therefore, it is likely that common attention shocks lead to comovement in net buying activities

and subsequent stock returns.

In addition, different types of investor attention could have different asset pricing implications.

On the one hand, since investors’ cognitive capacity and attention are constrained, readily avail-

able information cannot be promptly incorporated into asset prices (e.g., Sims (2003); Peng and

Xiong (2006); DellaVigna and Pollet (2009); Hirshleifer et al. (2009)). Data sharing via cookie net-

works could thus be meaningful in terms of attracting investor attention, encouraging information

acquisition and subsequent trading, and improving pricing efficiency (“rational” attention). On

the other hand, investors might overreact to stale public information and move prices away from

fundamentals in the short run (e.g., Ho and Michaely (1988); Huberman and Regev (2001); Da

et al. (2011); Tetlock (2011); Gilbert et al. (2012); Chawla et al. (2016)). This force could lead

to negative capital market consequences of data sharing (“behavioral” attention). As a result, the

effect of online data sharing on asset prices remains an empirical question.

To test the above hypotheses, we manually collect up-to-date cookie information from the

websites of all listed U.S. companies. We first show that the daily stock returns of data-sharing
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firms comove significantly with each other when common risk factors are controlled. Economically,

a 1% increase in the data-sharing firms’ return is associated with a daily abnormal return of 0.27%

for a focal firm in the same cookie network. We further include lagged returns and do not detect

any reversal effect, which suggests that the cookie network enhances the information diffusion

between data-sharing firms rather than imposing a temporary price impact and shifts the equity

demand curve (Merton (1971)). Our findings are also robust to controlling for a comprehensive set

of pairwise firm characteristics that proxy for fundamental similarity.

We note that firms do not randomly join a data-sharing network. Unobservable firm charac-

teristics may simultaneously affect the data-sharing decision and stock return comovement. To

alleviate this concern, we rely on the enactment of the California Consumer Privacy Act of 2018

(CCPA) as an exogenous shock to the effectiveness and intensity of data sharing. The CCPA in-

creases the hurdle for firms to collect and share individual information and therefore reduces data

sharing. To the extent that California firms face greater litigation threats due to the enactment

of the CCPA, we examine stocks with headquarters in California (i.e., the treatment group) and

compare them to stocks with headquarters outside California (i.e., the control group). Using a

standard difference-in-differences (DiD) setting based on the CCPA, we find a 41% reduction in

return comovement between the focal firm and California data-sharing firms in the post-CCPA

period. In contrast, the return comovement between the focal firm and non-California data-sharing

firms remains unchanged. Our identification test supports a causal effect of data sharing on return

comovement and documents that less data sharing significantly reduces return comovement.

To corroborate our argument, we conduct several cross-sectional tests. First, we utilize the het-

erogeneous effects of cookies on different industries. The targeted advertising function of cookies

is more widely used in consumer-related industries. Therefore, we expect to find stronger return

comovement among data-sharing firms in consumer-related industries than in other industries. Sec-

ond, the nonrival nature of data leads to a strong economy of scope: the cookies used by more firms

allow the platform company to provide more accurate profiling and better gauge investor attention.

As such, data sharing via more frequently installed cookies could lead to more pronounced attention

spillovers and hence stronger return comovement. The results of the cross-sectional tests support

these predictions.

To provide more direct evidence on the underlying mechanisms driving this return comovement,
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we utilize the log files from U.S. Securities and Exchange Commission (SEC)’s Electronic Data

Gathering, Analysis, and Retrieval (EDGAR) system to identify investors’ information acquisition

activities (e.g., Drake et al. (2012, 2015); Lee et al. (2015); Drake et al. (2017); Ryans (2017)). These

log files allow us to examine whether the search for a focal firm’s financial information comoves with

that of other data-sharing firms in the same cookie network. First, the focal firm’s EDGAR search

mostly comoves with that of data-sharing firms rather than the whole market. Second, human

searches for the focal firm’s information generally comove with human searches but not machine

downloads of the data-sharing firms’ information. These findings collectively provide direct support

for our hypothesis that data sharing within the same cookie network leads to a common shock to

investor attention and causes comovement in information acquisition. Such a rational response to

attention shocks also echoes our previous findings showing no return reversal.

Second, we provide direct evidence on how data sharing affects retail trading activities, especially

retail buying. We consider two sets of proxies for retail trading: one follows the algorithm proposed

by Boehmer et al. (2021), identifying retail trades based on intraday trading data and computing

retail order imbalance, and the other is based on changes in the number of Robinhood users. We

find a uniformly significant comovement in retail trading among data-sharing firms. Importantly,

this comovement nearly doubles when retail investors are net buyers of the data-sharing firms rather

than net sellers.

To close the inferential loop, we further show stronger return comovement when firms display

more correlated EDGAR search and correlated retail trading. Our findings are concentrated on

EDGAR searches by human investors but not machine downloads and on retail investors who are

net buyers but not net sellers. Taken together, these results suggest that online data sharing could

lead to return comovement through the correlated financial information acquisition and subsequent

buying of retail investors.

Finally, if data sharing causes return comovement through attention and information spillover,

we can link data sharing to predictable variation in returns. Specifically, if a focal firm’s own

price declines while other data-sharing firms’ price increases, we conjecture that the focal firm is

relatively undervalued and that its price should increase once investors learn about the firm. The

data-sharing portfolio return provides a reasonable benchmark for evaluating whether the focal

firm is undervalued or overvalued. Relying on this implication, we develop a trading strategy to
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exploit the lead-lag return predictability induced by information diffusion. We long the high-data-

sharing-portfolio-return and low-own-return stocks and short the low-data-sharing-portfolio-return

and high-own-return stocks. This long-short portfolio yields a daily return of 0.28% and a five

factor-adjusted return of 0.27%. Consistent with the nature of instant attention shocks generated

by the cookie network, the return predictability is short lived, as 88% (67%) of the 5-day (10-

day) risk-adjusted return is concentrated on the first day. On the other hand, we do not find any

subsequent reversal in stock returns, supporting the notion of information diffusion instead of a

temporary price impact.

Overall, we show that online data sharing via cookies generates common attention shocks to

data-sharing firms within the same network, resulting in a joint search for financial information and

correlated trading activities. Enhanced investor attention and the subsequent trading accelerate

the information diffusion process and lead to permanent price adjustments for firms in the same

cookie network.

Our findings are related to several strands of the literature. We first enrich academic and pol-

icy discussions on the use of personal information. Existing studies focus on the market design

and social externality of data sharing (e.g., Bergemann and Bonatti (2015, 2019); Acquisti et al.

(2016); Easley et al. (2018); Choi et al. (2019); Jones and Tonetti (2020); Acemoglu et al. (2021);

Bergemann et al. (2021); Cong et al. (2021); Liu et al. (2021)). The majority of extant studies

focus on the excessive data sharing problem, providing interesting theoretical predictions but little

empirical support. We instead focus on the nonrival nature of data and the resultant beneficial

effect of data sharing. Our analyses provide first-hand empirical evidence on how data sharing can

mitigate the limited attention problem in the capital market. The explosion of digital footprints

and technological innovations create granular segments of consumer characteristics; hence, firms

can easily target consumers with similar attributes and preferences. Our findings imply that per-

sonalized ads also cater to the interests of investors, leading to more financial information search

and stock return comovement.4

Second, our paper contributes to the literature on investor attention and individual trading

behaviors (e.g., Odean (1998); Peng and Xiong (2006); Barber and Odean (2008); Da et al. (2011);

4Note that we do not aim to assess the overall welfare implications of data sharing; instead, we focus on the capital
market consequences of the cookie network and document a potential beneficial effect.
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Tetlock (2011); Abel et al. (2013); Chen et al. (2021)) and information acquisition (e.g., Drake

et al. (2012, 2015); Lee et al. (2015); Drake et al. (2017); Ryans (2017); Blankespoor et al. (2019,

2020)).5 Unlike traditional information distribution methods, online data sharing allows for more

dynamic, interactive, and personalized information dispersal and therefore is more likely to capture

investors’ attention. More important, shocks to investor attention are instantly generated in a

highly integrated information market, providing a unique testing ground to analyze the spillover

effect of investor attention induced by data sharing. We follow the growing body of literature that

measures information acquisition using EDGAR, providing direct evidence to support information

acquisition comovement due to common shocks to investor attention via cookie networks.6 We

further utilize a newly developed algorithm, namely, that of Boehmer et al. (2021), to identify

retail trades and a novel dataset on Robinhood users to provide direct evidence on attention-driven

comovment in the context of retail trading. Our paper shows that online data sharing alleviates the

limited attention of investors and their underreaction to news, highlighting that targeted attention

shocks enhance information acquisition and help incorporate new information into stock prices.

We also contribute to the literature on stock return comovement and particularly to studies ex-

ploring the role of information diffusion. Past work links comovement to analyst coverage (Muslu

et al. (2014); Hameed et al. (2015)) and common underwriters (Grullon et al. (2014)). We instead

emphasize the role of online data sharing, which relies on mechanisms other than traditional in-

formation intermediaries to facilitate information spillover. Our findings also relate to recent work

on investor attention and comovement (e.g., Drake et al. (2017); Huang et al. (2019); Jiang et al.

(2019); Chen et al. (2021)). Our novelty is to illustrate the spillover effect on a specific set of

data-sharing stocks (i.e., through common cookies) beyond comovement with industry and market

peers and provide direct evidence on the economic mechanism, i.e., investor attention is translated

into more information acquisition and subsequent return comovement.

The remainder of this paper is organized as follows. Section 2 describes the data and the main

variables used and presents some stylized characteristics associated with data sharing. Section

5Our paper is also related to studies exploring how product advertising affects investor attention and information
acquisition (e.g., Keloharju et al. (2012); Lou (2014); Madsen and Niessner (2019); Focke et al. (2020); Liaukonytė
and Žaldokas (2020); Mayer (2021)).

6See, e.g., Drake et al. (2012), Drake et al. (2015), Lee et al. (2015), Dechow et al. (2016), Drake et al. (2016),
Bozanic et al. (2017), Drake et al. (2017), Ryans (2017), Li and Sun (2019), Bernard et al. (2020), and Liaukonytė
and Žaldokas (2020).
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3 relates return comovement to data sharing. Section 4 analyzes comovements in information

acquisition and retail trading due to data sharing. Section 5 develops a trading strategy that exploits

information diffusion in cookie networks and presents additional analyses. A brief conclusion follows

in Section 6.

2. Data and Main Variables

Our sample includes all common stocks trading on NYSE/AMEX/Nasdaq from 2015 to 2019

due to the availability of data sharing measures.7 We obtain daily and monthly stock data from

the Center for Research in Security Prices (CRSP). Quarterly and annual financial statement data

come from the COMPUSTAT database. Analyst forecast data come from the Institutional Brokers’

Estimate System (I/B/E/S). We acquire quarterly institutional equity holdings from the Thomson-

Reuters Institutional Holdings (13F) database.8 We also obtain the server request records from the

SEC EDGAR Log File dataset, which contains all internet search traffic for SEC filings.9

2.1. Measuring Data Sharing

2.1.1. What is a Cookie?

A cookie (also called a web cookie, Internet cookie, browser cookie) is a small piece of data (i.e.,

tracking code) stored on the user’s computer when browsing a website. Cookies are designed to be

a reliable mechanism for websites to remember information (such as items added to the shopping

cart in an online store and language preference) or to record the user’s browsing activity (such as

clicking particular buttons, logging in, and past website visits). They can also be used to remember

pieces of information that the user previously entered into form fields, such as names, addresses,

passwords, and payment details. Cookies are useful—they allow modern websites to work the

way people have come to expect—with an increasing level of personalization and rich interactive

7Since we only have a snapshot of the usage of cookies in April 2020, we use the latest five years as our testing
sample. Later, we perform a robustness test using only data from 2019 and find similar results.

8The institutional ownership data come from money managers’ quarterly 13F filings with the SEC. The database
contains the positions of all institutional investment managers with more than $100 million U.S. dollars under dis-
cretionary management. All holdings worth more than $200,000 U.S. dollars or 10,000 shares are reported in the
database.

9The data are available at https://www.sec.gov/dera/data/edgar-log-file-data-set.html. All tests using
the EDGAR data end in June 2017 due to data availability.
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functionality.10

If the host domain for a cookie is different from the company’s domain, it is a third-party cookie.

They are usually placed on a website via scripts or tags added to the webpage and placed by cookie

platforms that work with many companies and play an intermediary role as data brokers. As shown

in Figure 1, 10 cookies are placed on Verizon’s website (highlighted in the bottom-left corner),

among which 8 are third-party cookies and belong to 4 different platforms (Doubleclick/Google,

Demdex/Adobe, Contentsqure, and lpsnmedia/LivePerson).

Third-party cookies could also bring additional functionality to the site, such as enabling con-

tent to be shared via social networks.11 More important, third-party cookies are widely used for

retargeting advertisements and behavioral advertising. By adding tags to a page, advertisers can

track users or their devices across different websites. When users visit another site with the same

tag, it reports to the advertiser the site they were last on when the cookie was set. By aggregating

the information across millions of visits on different sites, it enables the advertiser to develop a

detailed, robust profile for each user through her browsing history.12 The advertiser then uses this

information to display more personalized and targeted advertisements based on the user’s perceived

habits and interests as well as recent search activities.

2.1.2. Data Sharing among Firms

We use the common third-party cookies shared between firms to measure firms’ data sharing

activities. Third-party cookies are placed by cookie platforms that work with many companies,

which aim to create customized advertisements based on an individual’s personal preferences and

promote various products and services. Customized popup advertisements could generate attention

shocks for internet users, and firms that share the same third-party cookies are likely to be jointly

recommended. As a result, the user might be directed to other data-sharing firms due to common

third-party cookies. Therefore, third-party cookies foster a data-sharing network within which the

data collected from one company could facilitate the marketing activities of another company.

10For perspective, Daily Mail and The Telegraph have 19,136 and 14,025 third-party cookies on their sites, respec-
tively (Davies (2017)).

11For instance, a website owner could use a piece of code provided by YouTube and include a YouTube video on
its webpage. YouTube will then be able to set cookies through this code and collect information on users’ browsing
activity.

12Although third-party cookies mostly target the browser rather than the user, as most people log in and use the
same browser regularly, the digital footprints collected over time can be highly personalized.
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We obtain up-to-date cookie information from the website of the company in April 2020. First,

we obtain the set of listed firms with available accounting information and company website ad-

dresses in fiscal year 2019 from COMPUSTAT. Second, we use OpenWPM to crawl all the cookies

from each company’s website. OpenWPM is a web privacy measurement framework that allows re-

searchers to collect data on a scale of thousands to millions of websites (Englehardt and Narayanan

(2016); Ramadorai et al. (2019)). Third, we trace back the ultimate owner (i.e., the platform such

as Google Ads and Adobe Audience Manager) of the third-party cookies using Cookiepedia. Cook-

iepedia is the largest database of pre-category cookies and online tracking technologies.13 Firms

that use third-party cookies from the same platform, e.g., Google Ads, share the internet traffic

data collected from their websites with each other. In this way, for each focal firm, we identify

the group of data-sharing firms that adopt the same third-party cookies. Figure 2 illustrates the

conceptual framework of data sharing through cookies and the definitions of data-sharing firms and

non-data-sharing firms.

One limitation is that we do not have full time series for the cookies. However, we conduct

a validation test by crawling the cookies again in October 2020 and find that the total number

of cookies (including first-party and third-party cookies) increases by 0.86%. Thus, the cookie

network is likely to be stable over time. In addition, firms are unlikely to opt into a cookie network

due to expected return comovement or attention comovement in the future; therefore, we are less

concerned about this data limitation.

2.2. Measuring Excess Return Comovement

For each focal firm i that has at least one third-party cookie, we construct a data-sharing

portfolio that consists of firms with common third-party cookies (i.e., firms with third-party cookies

from the same platform). The firms that are classified into the data-sharing portfolio are held

constant in our analyses.

To measure the excess return comovement with a data-sharing portfolio, we regress stock returns

on the data-sharing portfolio returns, controlling for the effects of common risk factors. Specifically,

13The Cookiepedia site was established to fill a gap in information about what cookies do, who is using them for
what purposes, and how to manage cookies and is maintained by OneTrust, a privacy management software company.
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we estimate the following daily regression model:

Ri,d = α0 + β1DSRET i,d + γ1MKT d + γ2SMBd + γ3HMLd + γ4MOMd + εi,d, (1)

where Ri,d is the excess return of stock i on day d and DSRET i,d is the (equal-weighted) excess

return of stock i’s data-sharing portfolio. We further adjust for the common risk factors based on

the Fama-French-Carhart (FFC) four-factor model consisting of the market factor (MKT, defined

as the excess return on the value-weighted CRSP market index over the one-month Treasury bill

rate), the size factor (SMB, defined as small minus big firm return premium), and the book-to-

market factor (HML, defined as the high book-to-market minus the low book-to-market return

premium) (Fama and French (1993)), and the Carhart (1997) momentum factor (MOM, defined as

the winner minus loser return premium).14

We also consider several alternative model specifications. First, we replace DSRET i,d in Equa-

tion (1) with its residual based on the FFC four-factor model, following Hameed and Xie (2019).

Specifically, we regress DSRET i,d on the FFC four factors over a one-year estimation period to

obtain betas of a stock. The residual (denoted as ResidualDSRET i,d) is computed as the realized

stock return minus the product of the stock’s lagged four-factor betas and the realized four-factor

returns of a given day. Second, we control for the lagged returns of stock i’s data-sharing portfolio.

Finally, we extend to pairwise regressions and further control for a host of pair characteristics,

following Antón and Polk (2014).

2.3. Descriptive Statistics

We start with 4,732 unique firms with available cookie information. We then merge these data

with platform information from Cookiepedia, and identify 2,274 unique firms (9,142 unique firm-

platform pairs) that have at least one third-party cookie. Since data sharing relies on common

third-party cookies, our final sample includes 1,558 unique data-sharing firms (7,083 unique firm-

platform pairs).

Table 1 presents a list of top platforms that own third-party cookies. For each platform, we

report the number of unique industries and the number of unique firms that adopt the platform’s

14We thank Kenneth French for making the common factor returns available via his website: https://mba.tuck.

dartmouth.edu/pages/faculty/ken.french/data_library.html.
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third-party cookie. Industry is defined by 2-digit SIC code. We find that different industries use the

same set of platforms. For example, Google’s cookie is used by 62 different industries, suggesting

that cookie usage is not industry specific. We further illustrate the data structure by providing

firm-level statistics. We find that the cookie market is dominated by several large platforms. For

instance, cookies from Google and Facebook are installed by 959 and 741 firms, respectively, while

cookies from Yahoo (ranked 10th) are installed by only 141 firms in our sample.

To further investigate whether some platforms specialize in a few industries, we calculate

the industry concentration for each platform in the last column. We find that the industry

concentration—defined as the Herfindahl-Hirschman Index (HHI) based on the number of adopters

in each industry—is low, and only one platform (i.e., Demandbase) has an HHI larger than 0.15.

Overall, we find that third-party cookies are adopted by a wide range of industries and firms,

consistent with the tremendous size of the online data market.

Panel A of Table 2 reports the summary statistics for a list of firm characteristics in 2019. There

are 1,348 unique firms with at least one third-party cookie and available accounting information.

The average firm adopts 4.38 third-party cookies. The cross-sectional variation is substantial, as

the standard deviation is 5.28. In addition, the overall characteristics of the firms are comparable

to those of the average publicly listed firms in the universe.

In Panel B of Table 2, we independently sort stocks according to the number of third-party

cookies adopted by the firm and quintile of firm size in 2019. We find that 52.2% of the firms

(1,471 out of 2,819) do not place any third-party cookies on their websites, while the remaining

47.8% of the firms (1,348 out of 2,819) allow for third-party cookies. Among the firms with third-

party cookies, 10.3% of the firms (139 out of 1,348) place 10 or more third-party cookies on their

websites. The number of firms with a given number of third-party cookies is evenly distributed

across each size quintile in most cases. Thus, we conclude that there is no correlation between

firm size and firms’ decision to place third-party cookies on their websites. Panel C reports similar

statistics when we replace firm size with the market-to-book ratio. We find that cookie adoption

is also unlikely to be correlated with the market-to-book ratio.
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3. Data Sharing and Return Comovement

3.1. The Baseline Analysis of Return Comovement

We start with the baseline analysis described in Equation (1) to examine the return comovement

within the full sample. The standard errors are clustered by calendar day to account for cross-

correlation in stock returns. Panel A of Table 3 reports the results. We find that DSRET is highly

significant with a coefficient of 0.266 (t-statistic = 15.91), as shown in Model 1. The effect is

also economically large, i.e., a 1% increase in the data-sharing firms’ return is associated with an

abnormal return of 0.27% per day for the focal firm. This suggests that data sharing generates

excessive comovement among firms after controlling for the common risk factors.

In Model 2, we replace DSRET i,d in Equation (1) with its residual based on the FFC four-factor

model as described above, i.e., ResidualDSRET i,d. The results are qualitatively and quantitatively

the same, and the focal firm tends to comove with other data-sharing firms.

We further include lagged returns of the data-sharing portfolio in Model 3. Specifically, we

include lagged 1-day, 2-day, 3-day, 4-day, and 1-week (day d − 9 to d − 5) returns of the data-

sharing portfolio. We find that the coefficients of all lagged terms are much smaller than the

contemporaneous term, i.e., 0.028 for the lagged 1-day return vs. 0.255 for the contemporaneous

return. The magnitudes of the coefficients on lagged returns indicate that the lagged effect is

not economically meaningful. More important, we do not find any reversal in past performance,

implying that the price adjustment associated with data sharing is permanent. This is consistent

with the notion that the cookie network enhances the information diffusion between data-sharing

firms rather than imposing a temporary price impact.

Model 4 further includes industry fixed effects to control for time-invariant industry character-

istics, and our findings remain unchanged.15 For instance, a 1% increase in the data-sharing firms’

return is associated with an abnormal return of 0.27% per day for the focal firm.

One caveat regarding our analysis is that cookie adoption is measured by a snapshot in April

2020. The statistical argument we make here is that any noise in the classification of data-sharing

firms could lead to an underestimation of the comovement effect. As a robustness check, we repeat

15The industry fixed effects are defined based on 4-digit SIC codes. Unreported results are also robust to controlling
for both industry and calendar day fixed effects.
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the analysis in Panel A based on the most recent year—2019. The cookie network we capture

should be very close to the real cookie network in 2019. As shown in Panel B of Table 3, we

find consistent evidence of return comovement among data-sharing firms, i.e., a 1% increase in the

data-sharing firms’ return is associated with an abnormal return of 0.29% per day for the focal firm

(Model 1). Our findings are also robust to all regression specifications. Overall, our baseline results

show that online data sharing plays an important role in explaining stock return comovement.

These preliminary findings support the information diffusion hypothesis, and we provide additional

evidence to analyze the economic mechanism in later sections.

We note that one non-mutually exclusive explanation is that correlated cash flows among data-

sharing firms could drive stock return comovement. To minimize the cash flow effect, we explicitly

control for the common risk factors and focus on the daily stock returns, as they are less likely

affected by the underlying cash flow comovement. In later analyses, we explore an identification

test that plausibly exogenously reduces data sharing to establish a causal relationship. We also

investigate the cross-sectional variation in firm characteristics and provide additional evidence when

controlling for similarity in a comprehensive set of firm and industry characteristics. To further

support daily return comovement, we examine the economic drivers related to instant attention

shocks and daily information acquisition and trading activities.

3.2. Identification Test

One concern about our main specification is that firms may not randomly join a data-sharing

network. Unobservable firm characteristics may simultaneously affect the data-sharing decision

and stock return comovement. In this subsection, we utilize the enactment of the CCPA as a

laboratory test that plausibly exogenously reduces data sharing to establish a causal relationship.

The CCPA was introduced in 2018 and gives consumers more control over the personal information

that businesses collect about them.16 This law enhances privacy rights and consumer protection for

residents of California, including (1) the right to know about the personal information a business

collects about them and how it is used and shared; (2) the right to delete personal information

collected from them; (3) the right to opt out of the sale of their personal information; and (4) the

right to nondiscrimination for exercising their CCPA rights. The enactment of CCPA increases

16See the State of California Department of Justice website for details: https://oag.ca.gov/privacy/ccpa.
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the hurdle of data collection and data sharing via cookies and therefore should reduce attention

comovement and return comovement. It is also reasonable to believe that the adoption of CCPA

is not driven by individual firm characteristics, satisfying the exclusion condition.

We note that almost all large firms doing business in California are affected by the CCPA.17 To

the extent that the enforcement of the CCPA is constrained by resources of the California Attorney

General, we assume that the litigation risk is higher for firms with headquarters in California

than for other firms. The underlying rationale is that public enforcement strength is negatively

correlated with geographic distance (Kedia and Rajgopal (2011)). In addition, any noise in the

data (e.g., non-California firms are similarly affected by the CCPA) would reduce the difference

between California and non-California firms and bias against finding significant results.

To proceed, our identification strategy involves examining stocks with headquarters in California

(i.e., the treatment group) and comparing them to stocks with headquarters outside California

(i.e., the control group). We then separate the data-sharing portfolio into two portfolios based on

headquarters location and conduct a standard DiD estimation via daily regression:

Ri,d = α0 + β1DSRET CAi,d + β2DSRET non-CAi,d + β3DSRET CAi,d × Postd

+ β4DSRET non-CAi,d × Postd + β5Postd + γ ′F d + εi,d, (2)

where DSRET CAi,d and DSRET non-CAi,d are the excess return of stock i’s data-sharing port-

folio with headquarters inside and outside California on day d, respectively.18 Postd represents

several dummy variables: Post 2Y equals 1 for two years after the introduction of the CCPA (i.e.,

2018–2019) and 0 otherwise (i.e., 2015–2017); Post+1 equals 1 for one year after the CCPA (i.e.,

2018) and 0 otherwise; and Post+2 equals 1 for the second year after the CCPA (i.e., 2019) and 0

otherwise. Vector F stacks the FFC four factors. The standard errors are clustered by calendar

day.

17The CCPA applies to for-profit businesses that do business in California and meet any of the following criteria:
(1) have a gross annual revenue of over $25 million; (2) buy, receive, or sell the personal information of 50,000 or more
California residents, households, or devices; or (3) derive 50% or more of their annual revenue from selling California
residents’ personal information.

18To ensure that our estimates are not driven by the different numbers of firms with headquarters inside and

outside California, we scale both portfolios by the total number of firms. Specifically, DSRET CAi,d =
∑

i∈CA Ri,d

Nd
,

DSRET non-CAi,d =
∑

i/∈CA Ri,d

Nd
, where Ri,d is the excess return of stock i on day d, and Nd is the total number

of firms. i ∈ CA and i /∈ CA indicate that stock i has headquarters inside and outside California, respectively. By
construction, DSRET CAi,d + DSRET non-CAi,d = DSRET i,d in Equation (1).
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We focus on β3 − β4 in Equation (2), as it captures the change in return comovement for the

treatment group relative to the control group for the post-CCPA period (compared to the pre-CCPA

period). We expect that the comovement between the focal firm and the California-data-sharing

portfolio is weaker than that between the focal firm and the non-California-data-sharing portfolio

during the post-CCPA period, i.e., β3 − β4 < 0.

The results are reported in Table 4. Model 1 estimates a simplified version of Equation (2)

to demonstrate a general relationship, i.e., the focal firm tends to comove slightly less with its

California-data-sharing portfolio, possibly due to more stringent privacy regulation. More impor-

tant, using the introduction of the CCPA as an exogenous shock to the intensity of data sharing, we

find that the return comovement between the focal firm and California-data-sharing firms signifi-

cantly declines by 0.165 in the post-CCPA period, accounting for 41% (−0.165/0.403) of the return

comovement in the pre-CCPA period (Model 2). In contrast, the return comovement between the

focal firm and non-California-data-sharing firms does not change in the post-CCPA period. This

finding suggests that the enactment of the CCPA only affected California-data-sharing firms, fur-

ther justifying the validity of the experiment. Importantly, the DiD estimate (i.e., β3−β4) amounts

to −0.175 and is statistically significant at the 5% level (F -statistic = 5.35).

Model 3 further investigates how the negative effect on return comovement evolves over time

after the CCPA. The CCPA was signed into law on June 28, 2018, and became effective on January

1, 2020. Since it takes time for firms to adapt to new regulation, we expect the reduction in

return comovement to be stronger in 2019 than in 2018. Consistent with our conjecture, we find

that the return comovement between the focal firm and the California-data-sharing firms does not

decline significantly in 2018 but weakens considerably in 2019, accounting for 58% of the return

comovement in the pre-CCPA period (−0.234/0.406). In addition, we do not find a significant

change in the return comovement between the focal firm and the non-California-data-sharing firms

in either year. The DiD estimate is −0.075 and statistically insignificant (F -statistic = 0.6) for

2018 and −0.255 and statistically significant at the 1% level (F -statistic = 7.14) for 2019. The

dynamic pattern provides additional supportive evidence for a causal relationship between data

sharing and return comovement. Our findings are also robust to including industry fixed effects as

shown in Models 4-6.

Overall, our identification test explores plausible exogenous variations in the effectiveness and
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intensity of data sharing and provides evidence to support the causal effect of data sharing on

return comovement. When data sharing is reduced due to the enhanced privacy rights following

the enactment of the CCPA, return comovement declines significantly.

3.3. Heterogeneity in Data Sharing

Next, we investigate the cross-sectional variation in data sharing. Since the primary purpose of

third-party cookies is to facilitate retargeting advertisements and behavioral advertising to directly

generate sales, we expect firms in consumer-related industries to comove more with the data-sharing

portfolio than firms in other industries.19

The results are tabulated in Panel A of Table 5. We report the estimates of Equation (1) based

on the subsamples, with Models 1-3 for firms in consumer-related industries and Models 4-6 for

other industries. Consistent with our conjecture, a focal firm in a consumer-related industry displays

higher comovement with other data-sharing firms than with a focal firm in another industry. For

instance, a 1% increase in the data-sharing firms’ return is associated with an abnormal return of

0.43% (0.18%) per day for the focal firm in a consumer-related industry (other industry) in Model

1 (Model 4).20 Our findings remain qualitatively and quantitatively similar under alternative

regression specifications.

Due to the economy of scope and the network effect, the cookies used by more firms are more

central in the network and more likely to collect information on an individual user; thus, they

build a granular profile for each user and facilitate more efficient data sharing.21 Therefore, we

conjecture that the adoption of high-frequency cookies is associated with more return comovement.

Specifically, we separate the third-party cookies into two groups based on their usage frequency—

cookies owned by the top 10 platforms in Table 1 are classified as high-frequency cookies, and the

remaining cookies are classified as low-frequency cookies.

We repeat the analysis of Equation (1) and report the results in Panel B of Table 5, with

19Specifically, we define consumer-related industries using the two-digit SIC code. Firms with two-digit SIC codes
of 01-09 (Agriculture, Forestry, and Fishing), 40-49 (Transportation, Communications, Electric, Gas, and Sanitary
Services), 52-59 (Retail Trade), 60-67 (Finance, Insurance, and Real Estate), and 70-89 (Services) are defined as
consumer related.

20Unreported results confirm that our findings are robust to alternative industry definitions, i.e., inclusion or
exclusion of industries other than retail trade.

21A cookie platform is “central” in the cookie network if it is adopted by many firms, or in other words, has many
direct connections with other firms in the network as measured by its degree of centrality (e.g., Freeman (1977);
El-Khatib et al. (2015)).
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Models 1-3 for high-frequency cookies and Models 4-6 for low-frequency cookies. We find that

the focal firms adopting high-frequency cookies display considerably more comovement with data-

sharing portfolios than those adopting low-frequency cookies. For instance, a 1% increase in the

data-sharing firms’ return is associated with an abnormal return of 0.55% (0.18%) per day for a

focal firm with high-frequency (low-frequency) cookies in Model 1 (Model 4). Our findings remain

unchanged in alternative regression specifications.

An untabulated test further divides the sample into two groups based on total institutional

ownership. We find that the return comovement between the focal firms and data sharing firms is

weaker among the firms with high institutional ownership; this is consistent with the notion that

third-party cookies mostly attract the attention of retail investors. Later, we will provide more

direct evidence on retail investors’ financial information acquisition and trading activities.

Collectively, we find that return comovement is one to two times higher when data sharing is

more important (e.g., consumer-related industries) and more effective (e.g., high-frequency cookies),

reinforcing the link between data sharing and return comovement.

3.4. Pairwise Analysis

To further alleviate the concern that the data sharing decision may coincide with other firm

fundamentals, we perform regression analysis to control for a comprehensive set of firm character-

istics, following Antón and Polk (2014). Specifically, we estimate the following monthly Fama and

MacBeth (1973) regression:

ARCORRij,t = α0 + β1DSij,t−1 + γ ′N ij,t−1 + εij,t, (3)

where ARCORRij,t is the correlation of daily FFC four-factor abnormal returns between stocks i

and j in month t. DSij,t−1 refers to a list of data sharing variables for each stock pair: NUMTP is

the number of common third-party cookies; LOGNUMTP is the logarithm of one plus the number

of common third-party cookies; %NUMTP is the percentage of common third-party cookies; and

DNUMTP is a dummy variable that equals 1 if NUMTP > 0 and 0 otherwise. Vector N stacks

all other control variables for each stock pair, including FCAP, defined as the total value of stock

held by common funds investing in both stocks, scaled by the total market capitalization of the
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two stocks; NUMANA, defined as the number of analysts that issued at least one annual earnings

forecast for both stocks during the previous 12 months; SAMESIZE, SAMEBM, and SAMEMOM,

defined as the negative of the absolute difference in percentile ranking for market capitalization,

book-to-market ratio, and past 12-month return across a pair, respectively; NUMSIC, defined as

the number of consecutive SIC digits, beginning with the first digit, that are equal for a pair; SIZE1

and SIZE2, defined as the normalized rank-transform of the percentile market capitalization of the

two stocks, as well as the interaction between them SIZE1 × SIZE2; RETCORR, ROECORR,

and VOLCORR, defined as the correlation in the two stocks’ past return, return on equity, and

abnormal trading volume, respectively; DIFFGROWTH, DIFFLEV, and DIFFPRICE, defined as

the absolute difference in the two stocks’ log sales growth rate, financial leverage ratio, and log share

price, respectively; and DSTATE, DINDEX, and DLISTING, defined as a dummy variable that

equals 1 if the two firms are located in the same state, belong to the S&P 500 index, and are listed

on the same stock exchange, and 0 otherwise, respectively. We also create additional controls based

on the normalized rank transform of the percentile book-to-market ratio (past 12-month return)

of the two stocks and the interaction between them, i.e., BM1, BM2, and BM1 × BM2 (MOM1,

MOM2, and MOM1 × MOM2), and further control for the nonlinear relationship captured by

SAMESIZE2, SAMESIZE3, SAMEBM2, SAMEBM3, SAMEMOM2, and SAMEMOM3.

Appendix A provides the detailed definition of each variable. We also report Newey and West

(1987) adjusted t-statistics.

We tabulate the results in Table 6. We find that data sharing is positively associated with the

four-factor residual correlation in stock returns after controlling for a comprehensive set of pair-

wise firm characteristics that proxy for fundamental similarity. This result holds across different

specifications both statistically and economically. In particular, a one-standard-deviation increase

in NUMTP is associated with a 0.19% higher residual stock return comovement in Model 4, which

translates into a 52% increase relative to the average comovement of 0.365% for the sample.22 Our

findings are robust to alternative proxies for data sharing that address the potential skewness in

the number of common third-party cookies. For instance, a one-standard-deviation increase in

LOGNUMTP (%NUMTP) is associated with a 0.20% (0.12%) higher residual stock return comove-

22The impact of NUMTP is 0.19%, computed as 0.125%× 1.531, where 0.125 is the regression coefficient in Model
4, and 1.531 is the standard deviation of NUMTP.
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ment in Model 6 (Model 8).23 In addition, as shown in Model 10, stock pairs with common cookies

display 0.28% higher residual return comovement than those without common cookies, accounting

for a 76% increase relative to the sample average.

Since we control for common coverage by institutional investors and sell-side analysts, as well as

the similarity in firm characteristics, our findings support the notion that online data sharing plays

an incremental role in generating common attention shocks among retail investors and subsequent

return comovement among firms in the same cookie network. Our results also confirm the dual

nature of investors as consumers (e.g., Keloharju et al. (2012); Liaukonytė and Žaldokas (2020)),

highlighting the spillover effect of consumer-oriented data collection and sharing on the financial

market.

4. How Does Data Sharing Affect Return Comovement?

In the previous section, we show that stock returns of data-sharing firms within a cookie network

exhibit strong comovement. In the following, we investigate the underlying mechanisms through

which data sharing affects return comovement. We hypothesize that online data sharing induces

correlated investor attention, resulting in common investment behavior. When investors search for

a firm on the internet, other data-sharing firms in its cookie network are more likely to be seen

due to retargeting advertisements and behavioral advertising. Since investor attention is a scarce

resource especially in the context of making buying decisions, individual investors are net buyers of

attention-grabbing stocks (Barber and Odean (2008)).24 In this way, common third-party cookies

could lead to correlated attention shocks and correlated net buying among data-sharing firms and

subsequent return comovement. In this section, we examine whether data sharing leads to (1)

correlated financial information acquisition and (2) correlated retail trading. We then investigate

how data sharing, correlated information acquisition, and correlated retail trading jointly affect

return comovement.

23The standard deviation of LOGNUMTP and %NUMTP in the full sample is 0.549 and 0.083, respectively.
24Investors’ attention is not as constrained when they are deciding which stocks to sell, because individual investors

typically hold only a few stocks and cannot easily short sell.
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4.1. Comovement in Information Acquisition

We explicitly measure investors’ attention based on their information acquisition activities via

the EDGAR system. The EDGAR log files record the network (IP) address of each user that

downloads a document. A large accounting and finance literature uses EDGAR logs to study

the demand for financial information (e.g., Drake et al. (2012, 2015); Lee et al. (2015); Dechow

et al. (2016); Drake et al. (2016); Bozanic et al. (2017); Drake et al. (2017); Ryans (2017); Li and

Sun (2019); Bernard et al. (2020); Liaukonytė and Žaldokas (2020)). While investors can access

SEC filings from other sources, such as a firm’s investor relations website, Yahoo! Finance, and

Bloomberg, it appears that EDGAR captures a significant fraction of financial disclosure demand.25

More important, the majority of EDGAR users are likely to be individual investors (Li and Sun

(2019)), and the acquisition of financial information is mostly driven by investment needs rather

than consumption needs; thus, EDGAR search provides an ideal setting for us to test the effect of

data sharing on retail attention and subsequent return comovement.

Following Ryans (2017), we first identify programmatic downloads (labeled robots) and consider

the remaining page views as human search. The general robot-screening procedure calculates

statistics about a user’s download patterns over a day and then applies one or more tests to classify

the user as a robot or a human. Specifically, (1) humans do not download more than 25 items in

a single minute; (2) humans do not download more than 3 different companies’ items in a single

minute; and (3) humans do not download more than 500 items in a single day.

To measure the comovement in EDGAR search, we estimate the following daily regressions:

HUM i,d = α0 + β1DSHUM i,d + β2DSROBi,d + β3MKTHUMd + β4MKTROBd + εi,d, (4)

where HUM i,d is the number of page views by human readers (i.e., human search) of stock i

on day d; DSHUM i,d and DSROBi,d are the (equal-weighted) number of human searches and

robot searches of stock i’s data-sharing portfolio, respectively; and MKTHUMd and MKTROBd

are the (equal-weighted) number of human searches and robot searches of the market portfolio,

respectively. The standard errors are clustered by calendar day.

The results are reported in Table 7. First, as shown in Model 1, human search for focal firms is

25See Li and Sun (2019) for a discussion on the advantages of SEC EDGAR over other information sources.
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highly correlated with human search for other data-sharing firms compared with the market average,

i.e., 0.801 vs. 0.209. This result supports the argument that data sharing leads to attention comov-

ment and joint search for financial information. The correlated human search among data-sharing

firms is distinct from the market-wide search activities that could be driven by macroeconomic

information. Second, Model 2 further controls for robot search measures. Our conjecture is that

data sharing leads to comovement in investors’ attention and should not affect robot search, which

relies on computer programs to download large volumes of data instead of selectively searching for

a few firms. We find consistent results that human search for the focal firms is highly correlated

with human search but not robot search for the data-sharing firms, i.e., 0.717 vs. 0.021. Finally,

our findings remain intact after controlling for industry fixed effects (Models 3-4).

As a robustness check (untabulated), we employ winsorized versions of the search measures, and

the results largely remain unchanged.26 Overall, we identify an important economic mechanism

that drives return comovement, i.e., online data sharing generates correlated attention shocks and

facilitates comovement in information acquisition.

Note that a joint EDGAR search per se does not imply that investors uncover value-relevant new

information about the firms, as investors could still irrationally react to stale public information and

move the price away from fundamentals (e.g., Ho and Michaely (1988); Barber and Loeffler (1993);

Liang (1999); Huberman and Regev (2001); Da et al. (2011); Tetlock (2011); Engelberg et al. (2012);

Gilbert et al. (2012); Chawla et al. (2016); Da et al. (2020); Barber et al. (2021); Chen et al. (2021)).

Combining these results with our early findings showing no return reversal, we conclude that retail

investors searching through the EDGAR system appear to be relatively sophisticated, and their

information acquisition activities reveal new information. Our results also suggest that online data

sharing within common third-party cookies differs from the role of other online platforms in gauging

investor attention and information dissemination. For instance, the retail attention captured by

Google search volumes (Da et al. (2011, 2020)) and news diffusion through Twitter (Chawla et al.

(2016)) leads to transitory price pressure and then reversal, suggesting that investors overreact to

stale news rather than incorporating new information into stock prices. This difference could be

attributed to the more dynamic, interactive, and personalized nature of targeted ads, as they are

26We winsorize the top and bottom 1% of the data. Since the EDGAR page views are highly skewed, these
alternative measures alleviate the concern that the results may be driven by certain outlier stocks.
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more likely to cater to consumers and investors who are interested in the corresponding firms. As

a result, investors respond more rationally to targeted attention shocks.

4.2. Comovement in Retail Trading

While financial information acquisition through EDGAR searches is likely to facilitate subse-

quent trading and price adjustments, in this section, we provide direct evidence on how data sharing

affects retail trading activities. We consider two sets of proxies for retail trading.

First, we follow the algorithm proposed by Boehmer et al. (2021) to identify retail trades

from TAQ data. The approach of these authors exploits two key institutional features of retail

trading. First, most marketable equity orders initiated by retail investors take place off-exchange,

and they are either filled from a broker’s inventory or routed to wholesalers (Battalio et al. (2016)).

Accordingly, we limit our analysis to off-exchange trades, which are designated with the exchange

code “D” in TAQ. Second, retail traders typically receive a small price improvement, i.e., a small

fraction of a cent, relative to the national best bid or offer (NBBO). Common price improvement

amounts include 0.01, 0.1, and 0.2 cents. In contrast, institutional orders tend to be executed at

whole or half-cent increments. Thus, we further identify a trade as a retail buy (sell) transaction

if it takes place at a price just below (above) a round penny, i.e., trades with fractional penny

prices between 0.006 and 0.01 (between 0.00 and 0.004). According to Boehmer et al. (2021), this

approach can be used to identify the majority of overall retail trading activity. To measure retail

investors’ directional trades, we compute the order imbalance of stock i on day d: OIBV OLi,d =

BV OLi,d−SV OLi,d

BV OLi,d+SV OLi,d
, where BV OLi,d and SV OLi,d are the buy and sell volumes of marketable retail

orders, respectively, following Boehmer et al. (2021).

Our second proxy for retail trading is based on the number of Robinhood users. Robinhood is an

online retail brokerage company that offers commission-free trading on an easy-to-use mobile app.

As of June 2021, Robinhood had 22.5 million funded accounts, and more than half of its customers

are first-time investors (Darbyshire et al. (2021)). We obtain Robinhood data from the Robintrack

website, which provides hourly data on the number of Robinhood users who hold a specific stock.27

We merge the Robintrack data with CRSP data using the ticker on Robintrack, and identify the last

27See more details on the Robintrack website, https://robintrack.net/, and in other papers using the same data
(e.g., Barber et al. (2021); Welch (2021)). Our analyses using the Robintrack data start from May 2018 due to data
availability.
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observed user count prior to the close of trading (4 pm ET) for each stock i on each day d (denoted as

useri,d). We follow Barber et al. (2021) to construct two measures for changes in stock popularity:

(1) the daily change in the number of Robinhood users, i.e., RHNUM i,d = useri,d−useri,d−1, and

(2) the daily percentage change in the number of Robinhood users, i.e., RHPCT i,d =
useri,d
useri,d−1

− 1.

To measure comovements in retail trading activities, we estimate the following daily regressions:

TRAi,d = α0 + β1DSTRAi,d + β2MKTTRAd + εi,d, (5)

where TRAi,d refers to a list of retail trading proxies of stock i on day d, including OIBV OLi,d,

RHNUM i,d, and RHPCT i,d, as defined above. DSTRAi,d and MKTTRAd are the (equal-

weighted) retail trading measures of stock i’s data-sharing portfolio and the market portfolio,

respectively. The standard errors are clustered by calendar day.

The results are reported in Table 8. First, we find a significant comovement in the retail order

imbalance between the focal firms and data-sharing firms (Model 1). Specifically, a 1% increase in

the data-sharing firms’ order imbalance (i.e., DSOIBVOL) is associated with a 0.09% increase in

the order imbalance of the focal firm after the market average retail trading activities are controlled.

Next, we replace DSOIBVOL with (1) DSOIBVOL+, which equals DSOIBVOL if DSOIBVOL >

0 and 0 otherwise, and (2) DSOIBVOL−, which equals DSOIBVOL if DSOIBVOL < 0 and 0

otherwise. Prior work suggests that individual investors are net buyers of attention-grabbing stocks

and that attention shocks should lead to net buying (e.g., Odean (1999); Barber and Odean (2008)).

If the correlated retail trading between the focal firms and data-sharing firms is driven by attention

shocks, we expect to see stronger comovement in net buying than in net selling. As shown in Model

2, the focal firm tends to comove more with the data-sharing portfolio when retail investors are net

buyers of the data-sharing firms rather than net sellers, as the comovement nearly doubles in this

case, i.e., 0.117 vs. 0.059. The difference in the regression coefficients is also statistically significant

at the 5% level (F -statistic = 3.84).

Third, our findings remain intact when retail trading is measured by the change in the number

of Robinhood users (Models 5-8). For instance, one additional Robinhood user corresponding to the

data-sharing firms (i.e., DSRHNUM) is associated with a 0.39 increase in the number of Robinhood

users corresponding to the focal firm after the market average of Robinhood adoption is controlled
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(Model 5).28 Overall, we show that online data sharing generates attention spillovers within a

cookie network, resulting in more joint search for financial information and correlated trading,

especially correlated buying among data-sharing firms.

4.3. Data Sharing, Correlated Investor Behavior, and Return Comovement

To further link the return comovement with data sharing and the economic mechanism via

correlated EDGAR search and retail trading, we expand our analysis described in Equation (3) to

the following monthly Fama and MacBeth (1973) specification:

ARCORRij,t = α0 + β1NUMTPij,t−1 + β2NUMTPij,t−1 × IBCORRij,t−1

+ β3IBCORRij,t−1 + γ ′N ij,t−1 + εij,t, (6)

where IBCORRij,t−1 refers to a set of variables indicating the correlation between the investor

behavior related to stock i and that related to stock j in month t: HUMCORR is the correlation

of daily human search, ROBCORR is the correlation of daily robot search, OIBVOLCORR is the

correlation of the daily order imbalance of share volume, POSOIBVOL is the percentage of common

retail buys, NEGOIBVOL is the percentage of common retail sells, RHNUMCORR is the correlation

of the daily change in the number of Robinhood users, and RHPCTCORR is the correlation of the

daily percentage change in the number of Robinhood users. All the other variables are defined as

in Equation (3). Appendix A provides a detailed definition of each variable. We also report Newey

and West (1987) adjusted t-statistics.

The parameter of interest is β2. If the higher return comovement between data-sharing firms

is indeed due to correlated investor attention and subsequent trading activities, we expect to see

stronger comovement when firms also display more correlated EDGAR search and correlated trading

from retail investors. The results are tabulated in Table 9. While data sharing affects only the

attention of human investors, we nevertheless include robot search as a placebo test in Models 1-2

but expect to see a positive (insignificant) value of β2 when interacting with human (robot) search.

28We do not further consider positive vs. negative changes in the number of Robinhood users, because our sample
period coincides with a rapid increase in aggregate Robinhood holdings (Barber et al. (2021); Welch (2021)). There-
fore, we rely on the order imbalance measure constructed from TAQ data to provide an accurate estimate of retail
buying and selling activities.
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Indeed, we find that online data sharing further enhances residual return comovement when the

two stocks are jointly searched on EDGAR by human investors. In contrast, the joint robot search

does not affect return comovement through data sharing.

Furthermore, we show that the data-sharing firms with more correlated retail trading show

greater residual return comovement. The results are robust to various retail trading measures across

all the specifications (Models 3-10). Importantly, as shown in Models 5-6, online data sharing

enhances residual return comovement only when retail investors are net buyers of both stocks.

In contrast, common selling by retail investors does not affect return comovement through data

sharing. Collectively, the findings in this section reinforce our previous observation that data sharing

facilitates attention spillover, encourages individual investors to acquire financial information and

make information-based buys, and therefore leads to return comovement among data-sharing firms.

5. Additional Analyses

5.1. Implications for Trading Strategy

Our previous analysis suggests that online data sharing enhances financial information acquisi-

tion and diffusion, leading to return comovement among data-sharing firms. If data sharing causes

comovement through attention and information spillover, we can link data sharing to predictable

variation in returns. Suppose that stocks i and j share common third-party cookies, and we label

stock i as focal stock and stock j as stock i’s data-sharing stock. If stock i’s price (i.e., own price)

declines while data-sharing stock j’s price increases, we conjecture that stock i is relatively un-

dervalued and its price should increase once investors learn about the firm, i.e., the positive news

spills over from stock j to i. The data-sharing portfolio return provides a reasonable benchmark

to evaluate whether the focal stock is undervalued or overvalued, and our trading strategy exploits

the lead-lag return predictability induced by information diffusion.

In particular, at the end of day d, we independently sort stocks into quintile portfolios according

to their own returns and data-sharing portfolio returns to generate 25 (5 × 5) portfolios. The low-

(high)-own-return and data-sharing-portfolio-return portfolios comprise the bottom (top) quintile

of stocks based on the own return and data-sharing portfolio return, respectively. The data-sharing

portfolio return is the average return of all stocks with common third-party cookies, weighted
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by the number of common third-party cookies. We compute the equal-weighted return on day

d + 1 for each of the 25 portfolios, with the investment strategy of going long (short) the low-

(high)-own-return stocks (“LMH”) and the investment strategy of going long (short) the high-

(low)-data-sharing-portfolio-return stocks (“HML”). “HL − LH” reports returns for the investment

strategy of going long the high-data-sharing-portfolio-return and low-own-return stocks and short

the low-data-sharing-portfolio-return and high-own-return stocks.

In addition to raw portfolio returns, we follow Antón and Polk (2014) and report risk-adjusted

returns from a five-factor model consisting of the FFC four factors (i.e., market, size, book-to-

market, and momentum) and the short-term reversal factor (ST REV, defined as the loser minus

winner return premium) (Jegadeesh (1990)). The standard errors in all estimations are corrected

for autocorrelation using the Newey and West (1987) method.

Panel A of Table 10 reports the results. Several findings are noteworthy. First, a stock’s own

return is negatively associated with future performance across all data-sharing-portfolio-return

quintiles, suggesting a short-term reversal at a daily frequency. Second, within each own-return

quintile, stocks with high data-sharing portfolio returns outperform those with low data-sharing

portfolio returns, although the difference is statistically significant only among stocks with high own

returns. More important, stocks with low own-return and high data-sharing-portfolio-return yield

a daily return (five factor-adjusted return) of 0.17% (0.13%), while stocks with high own-return

and low data-sharing-portfolio-return yield a daily return (five factor-adjusted return) of −0.11%

(−0.14%). The long-short portfolio yields a daily return of 0.28% (t-statistic = 12.34) and five

factor-adjusted returns of 0.27% (t-statistic = 11.88).

Panel B of Table 10 focuses on five factor-adjusted returns and reports similar statistics for

alternative holding periods from day d+1 to d+5 and day d+1 to d+10. To increase the power of

our tests, we construct daily rebalanced portfolios with overlapping holding periods. Specifically,

for the strategy with a 5-day holding period, on any given day d+1, the strategy holds five portfolios

that are formed on days d − 4 to d. The return on day d + 1 is an equal-weighted average of the

previously initiated five portfolio returns. Focusing on the data-sharing-stock strategy (“HL −

LH”), the long-short portfolio yields a daily five factor-adjusted return of 0.06% (t-statistic = 6.22)

over the 5-day window and 0.04% (t-statistic = 5.66) over the 10-day window. Consistent with

attention and information spillovers among retail investors, return predictability is short lived, as
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88% (67%) of the 5-day (10-day) risk-adjusted return is concentrated on the first day.29 On the

other hand, we do not find any subsequent reversal in stock returns, suggesting that the price

adjustment of the data-sharing firms is permanent and is not driven by a temporary price impact.

Unreported results show that value-weighted portfolios do not generate significant trading prof-

its; hence, return predictability is more prominent among small stocks that are likely to be held

by retail investors (e.g., Kumar (2009); Bali et al. (2011); Han and Kumar (2013)). Overall, we

find that online data sharing mitigates the limited attention among retail investors, and targeted

attention shocks enhance financial information acquisition via EDGAR search and help incorporate

the new information into stock prices, resulting in a permanent price adjustment for data-sharing

firms.

5.2. Cash Flow Comovement in the Long-Term

Note that the stock return comovement among the data-sharing firms in a cookie network can

also be driven by correlated cash flows. In the above analyses, we focus on the daily frequency to

exploit instant attention shocks and minimize the impact of correlated cash flows. In addition, we

exploit a plausible exogenous shock, i.e., the enactment of the CCPA, that affects data sharing but

not other firm characteristics, showing that the examined return comovement is not entirely due to

the endogenous data-sharing decisions made by firms with correlated cash flows. We also control

for the potential similarity in firm fundamentals (e.g., comovement in return on equity and the

similarity in industry classification and sales growth) in pairwise analyses, which largely eliminates

the effect of correlated cash flows. Therefore, our previous results are unlikely to be driven by cash

flow comovement.

In this subsection, we seek to provide complementary analyses on whether there is any cash

flow comovement among data-sharing firms in the long-term. For example, when an individual is

booking a flight on American Airlines’ website, which allows the Adobe platform (Adobe Audience

Manager) to collect browsing data, an advertisement from a hotel company that works with the same

platform (i.e., a data-sharing firm of the Adobe cookie network) could pop up in a few minutes or

even seconds. Thus, the individual might also purchase from this connected hotel company, leading

29Specifically, 0.268/(0.061 × 5) = 88%, where 0.268 (0.061) is the daily five factor-adjusted return of the “HL −
LH” strategy with a 1-day (5-day) holding period from Panel A (Panel B).
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to a comovement in cash flows between American Airlines and the hotel company.

In the same spirit of return comovement, we estimate the following annual panel regression to

measure cash flow comovement:

Chari,y = α0 + β1DSChari,y + γ ′Ci,y + εi,y, (7)

where Chari,y is a list of firm characteristics of stock i in year y: Adv is the advertising expenditures

scaled by total assets; SALE is the sales scaled by total assets; and RD is the R&D expenses scaled

by total assets. DSChari,y is the (equal-weighted) firm characteristics of stock i’s data-sharing

portfolio. Vector C stacks all other control variables that might affect the firm’s cash flow, including

M2B, Tangibility, TotalAsset, CR, Coverage, Zscore, and Leverage. Appendix A provides a detailed

definition of each variable. We cluster standard errors at the stock level.

The results are reported in Table 11, with Models 1-3 including year fixed effects and Models

4-6 including year and industry fixed effects to absorb the time trend and time-invariant industry

characteristics. First, without controlling for industry fixed effects, we find that focal firms tend

to comove with other data-sharing firms in relation to advertising expenditures and sales revenue.

For instance, a 1% increase in the data-sharing firms’ advertising expenditures (sales) is associated

with a 0.45% (0.10%) increase for the focal firm in Model 1 (Model 2).

Next, we conduct a placebo test by investigating R&D expenses. We do not expect comovement

in the R&D expenses of the data-sharing firms, because online data sharing should affect only the

focal firm’s cash flows related to advertising and selling (i.e., consumer decisions) but not R&D

policy (i.e., manager decisions). However, if data sharing is just a proxy for the fundamental

similarities between firms, R&D expenses could be spuriously correlated with data sharing. We

find that the R&D expenses of the data-sharing firms are not correlated (Model 3).

Finally, we find that the cash flow comovement is fully absorbed by industry fixed effects (Models

4-6). The economic interpretation of this phenomenon is that time-invariant industry characteristics

play an important role in cash flow comovements among data-sharing firms, e.g., consumers’ joint

purchases are concentrated on products from the same industry. This finding also reinforces our

argument based on our previous analyses that data-sharing-induced return comovement is not

driven by cash flow comovement when industry fixed effects and other pairwise similarities are
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controlled.

6. Conclusion

Firms connected through a common third-party cookie could reach out to the same set of

tracked users. Therefore, these widely used third-party cookies can foster a data-sharing network

within which firms face common attention shocks. In this paper, we examine the capital market

consequences of such common attention shocks due to data sharing within a cookie network. Con-

sistent with the attention spillover effect, we find strong return comovement among data-sharing

firms in the same cookie network. The price adjustment is also permanent, suggesting that the

cookie network enhances the information diffusion between data-sharing firms rather than imposing

a temporary price impact. An identification test using the enactment of the CCPA as an exogenous

shock to the effectiveness and intensity of data sharing further supports a causal link. Return co-

movement among data-sharing firms is also more pronounced for consumer-related industries and

for cookies that are more frequently installed. The latter result highlights the importance of the

economy of scope in data sharing: more frequently installed cookies allow platform companies to

provide more accurate profiling, resulting in better attention capture.

We further test the comovement in information acquisition and retail trading among data-

sharing firms, providing direct evidence on the attention spillover effect. Using EDGAR searches

as a proxy for investors’ attention and information acquisition activities, we show that data sharing

increases the joint search for financial information for firms in the same cookie network, and the

effect is concentrated on human searches rather than machine downloads. We also find a significant

comovement in retail trading among data-sharing firms, and the results are stronger for net buying

than net selling. In addition, we link comovement in information acquisition and retail trading to

return comovement by showing that online data sharing enhances return comovement when human

investors jointly search for two stocks on EDGAR and buy the two stocks together.

Our paper joins a growing literature on data sharing. We provide first-hand empirical evidence

on how data sharing can affect the capital market and document a beneficial effect whereby online

data sharing alleviates the limited attention of investors and helps incorporate the new information

into stock prices.
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Figure 1. Example of Cookie Adoption
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Figure 2. Conceptual Framework of Data Sharing through Cookies
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Table 1. List of Top Online Cookie Platforms

This table presents a list of top platforms that own the third-party cookies. For each platform, we report the number of unique
industries and the number of unique firms that adopt the platform’s third-party cookies, as well as the industry concentration,
computed as the Herfindahl-Hirschman Index (HHI) based on the number of adopters in each industry.

Platforms No. of Firms with Cookies No. of Industries with Cookies Industry Concentration
Doubleclick (Google) 959 62 0.073
Facebook 741 56 0.073
LinkedIn 464 49 0.087
Drawbridge Inc 450 49 0.085
Microsoft 333 47 0.068
Twitter 304 44 0.082
TheTradeDesk 274 46 0.073
Adobe 271 41 0.060
AppNexus Inc 220 43 0.075
Yahoo 141 35 0.078
Pardot 109 26 0.099
Rubicon Project 103 33 0.088
Casale Media 100 32 0.075
AddThis 97 33 0.055
OpenX 97 33 0.087
Pubmatic 85 31 0.074
Tapad Inc 84 32 0.059
Exelate 78 27 0.095
Vimeo 78 30 0.076
Lotame 77 23 0.060
Blue Kai 77 31 0.110
Share This 74 26 0.085
MediaMath Inc 74 28 0.097
Eyeota 73 24 0.098
Demandbase 72 22 0.165
Advertising 71 27 0.085
Aggregate Knowledge 69 31 0.056
simpli 65 24 0.129
Quantcast 64 23 0.104
IPONWEB 62 22 0.106
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Table 2. Summary Statistics

Panel A presents the summary statistics of firms with at least one third-party cookie in the fiscal year 2019. We report the
means, standard deviations, medians, and quantile distributions of a list of firm characteristics. N refers to the number of
unique firms. Panel B includes all the common stocks listed on NYSE, AMEX, and NASDAQ with available information from
CRSP and COMPUSTAT. The stocks are independently sorted according to the number of third-party cookies adopted by the
firm and quintile of firm size in 2019. We report the number of stocks in each portfolio. Panel C reports similar statistics for
the double-sorted portfolios according to the number of third-party cookies and quintile of market-to-book ratio. Appendix A
provides a detailed definition of each variable.

Panel A: Summary Statistics
N Mean p25 p50 p75 S.D.

Ntpcookie 1,348 4.378 1.000 2.000 5.000 5.282
Adv 636 0.025 0.004 0.011 0.033 0.032
SALE 1,344 6.859 5.633 7.123 8.467 2.105
RD 816 0.071 0.004 0.031 0.095 0.098
M2B 1,348 2.143 1.107 1.542 2.665 1.495
Tangibility 1,342 0.262 0.082 0.165 0.403 0.239
TotalAsset 1,348 7.270 5.888 7.451 8.842 2.081
CR 1,246 2.275 1.080 1.619 2.633 1.959
Coverage 1,244 1.881 1.054 1.941 2.669 1.246
Zscore 1,158 2.932 1.092 2.490 4.167 4.289
Leverage 1,348 0.313 0.128 0.301 0.468 0.216
Panel B: Double Sort on the Number of Cookies and Size

Quintiles of Size
Ntpcookie 1 2 3 4 5 Total

0 367 379 303 254 168 1,471
1 82 59 86 103 138 468
2 49 39 50 45 55 238
3 25 13 22 34 34 128
4 13 14 23 27 27 104
5 11 15 11 21 24 82
6 2 9 17 15 19 62
7 3 7 10 17 13 50
8 3 5 6 9 17 40
9 3 3 6 7 18 37
≥10 6 21 30 32 50 139
Total 564 564 564 564 563 2,819
Panel C: Double Sort on the Number of Cookies and Market-to-Book Ratio

Quintiles of Market-to-Book Ratio
Ntpcookie 1 2 3 4 5 Total

0 315 305 269 287 295 1,471
1 93 82 105 97 91 468
2 49 52 52 52 33 238
3 21 25 24 36 22 128
4 20 16 30 14 24 104
5 17 18 18 14 15 82
6 9 14 9 11 19 62
7 7 7 11 10 15 50
8 6 12 9 8 5 40
9 7 7 12 4 7 37
≥10 20 26 25 31 37 139
Total 564 564 564 564 563 2,819
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Table 3. Baseline Results on Return Comovement

This table presents the results of the following daily regressions, as well as their corresponding t-statistics clustered by calendar
day:

Ri,d = α0 + β1DSRET i,d + γ′F d + εi,d,

where Ri,d is the excess return of stock i on day d, and DSRET i,d is the (equal-weighted) excess return of stock i’s data-sharing
portfolio. Vector F stacks the Fama-French-Carhart (FFC) four factors, including the market factor (MKT), the size factor
(SMB), the book-to-market factor (HML), and the momentum factor (MOM). We further replace DSRET with ResidualDSRET
(Model 2), include lagged DSRET from day d − 9 to d − 1 (Model 3), and include industry fixed effects (Model 4). Panel A
reports the regression results over the entire sample period from 2015 to 2019, and Panel B reports similar statistics for 2019
(only the main variables are tabulated for brevity). Numbers with “*”, “**”, and “***” are significant at the 10%, 5%, and
1% levels, respectively.

Panel A: Full Sample (2015–2019)
Model 1 Model 2 Model 3 Model 4

DSRET 0.266∗∗∗ 0.255∗∗∗ 0.266∗∗∗

(15.91) (15.82) (15.91)
ResidualDSRET 0.264∗∗∗

(15.87)
MKT 0.659∗∗∗ 0.897∗∗∗ 0.670∗∗∗ 0.659∗∗∗

(40.89) (199.57) (43.21) (40.86)
SMB 0.486∗∗∗ 0.657∗∗∗ 0.494∗∗∗ 0.486∗∗∗

(39.52) (98.49) (41.32) (39.49)
HML 0.108∗∗∗ 0.143∗∗∗ 0.110∗∗∗ 0.108∗∗∗

(14.17) (19.97) (15.50) (14.17)
MOM -0.042∗∗∗ -0.049∗∗∗ -0.038∗∗∗ -0.042∗∗∗

(-7.60) (-8.75) (-7.26) (-7.61)
L1.DSRET 0.028∗∗∗

(7.49)
L2.DSRET 0.004

(1.02)
L3.DSRET 0.007∗∗

(2.21)
L4.DSRET 0.011∗∗∗

(2.77)
L5 9DSRET 0.001

(0.36)
Constant 0.000∗∗ 0.000∗∗∗ 0.000 0.000∗∗

(2.06) (2.81) (1.26) (2.07)
Industry FE N N N Y
Obs 1,827,262 1,827,262 1,813,161 1,827,057
R-squared 0.075 0.075 0.075 0.075
Panel B: Recent Year (2019)

Model 1 Model 2 Model 3 Model 4
DSRET 0.289∗∗∗ 0.232∗∗∗ 0.290∗∗∗

(6.88) (8.22) (6.85)
ResidualDSRET 0.289∗∗∗

(6.88)
L1.DSRET 0.032∗∗∗

(4.41)
L2.DSRET 0.004

(0.53)
L3.DSRET 0.009

(1.16)
L4.DSRET 0.005

(0.64)
L5 9DSRET 0.003

(0.99)
Constant 0.000 0.000 -0.000 0.000

(1.22) (1.41) (-0.20) (1.21)
FFC Factors Y Y Y Y
Industry FE N N N Y
Obs 363,786 363,786 350,322 363,617
R-squared 0.072 0.072 0.067 0.072
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Table 4. Identification Test of Return Comovement and Data Sharing: California Consumer Privacy Act

This table presents the results of the following daily regressions, as well as their corresponding t-statistics clustered by calendar
day:

Ri,d =α0 + β1DSRET CAi,d + β2DSRET non-CAi,d + β3DSRET CAi,d × Postd + β4DSRET non-CAi,d × Postd
+ β5Postd + γ′F d + εi,d,

where Ri,d is the excess return of stock i on day d and DSRET CAi,d and DSRET non-CAi,d are the excess returns of stock
i’s data-sharing portfolio with headquarters in and outside California, respectively. Postd represents several dummy variables:
Post 2Y equals 1 for two years after the introduction of the California Consumer Privacy Act (CCPA) (i.e., 2018–2019) and
0 otherwise; Post+1 equals 1 for one year after the CCPA (i.e., 2018) and 0 otherwise; and Post+2 equals 1 for the second
year after the CCPA (i.e., 2019) and 0 otherwise. Vector F stacks the Fama-French-Carhart (FFC) four factors. We further
include industry fixed effects (Models 4-6). Numbers with “*”, “**”, and “***” are significant at the 10%, 5%, and 1% levels,
respectively.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
DSRET CA 0.312∗∗∗ 0.403∗∗∗ 0.406∗∗∗ 0.312∗∗∗ 0.405∗∗∗ 0.407∗∗∗

(8.03) (8.90) (8.97) (8.02) (8.94) (9.01)
DSRET non-CA 0.422∗∗∗ 0.418∗∗∗ 0.418∗∗∗ 0.422∗∗∗ 0.418∗∗∗ 0.418∗∗∗

(16.91) (16.64) (16.77) (16.93) (16.65) (16.79)
DSRET CA × Post 2Y -0.165∗∗∗ -0.167∗∗∗

(-2.62) (-2.66)
DSRET non-CA × Post 2Y 0.010 0.011

(0.62) (0.67)
DSRET CA × Post+1 -0.082 -0.085

(-1.03) (-1.07)
DSRET non-CA × Post+1 -0.007 -0.006

(-0.33) (-0.30)
DSRET CA × Post+2 -0.234∗∗∗ -0.237∗∗∗

(-2.92) (-2.94)
DSRET non-CA × Post+2 0.021 0.022

(1.07) (1.11)
Post 2Y 0.000 -0.000

(0.08) (-0.09)
Post+1 -0.000 -0.000

(-0.39) (-0.48)
Post+2 0.000 0.000

(0.42) (0.25)
MKT 0.559∗∗∗ 0.558∗∗∗ 0.557∗∗∗ 0.559∗∗∗ 0.558∗∗∗ 0.557∗∗∗

(28.46) (28.59) (28.99) (28.46) (28.59) (28.99)
SMB 0.423∗∗∗ 0.420∗∗∗ 0.419∗∗∗ 0.423∗∗∗ 0.419∗∗∗ 0.419∗∗∗

(30.10) (30.03) (30.22) (30.09) (30.03) (30.22)
HML 0.080∗∗∗ 0.079∗∗∗ 0.079∗∗∗ 0.080∗∗∗ 0.079∗∗∗ 0.079∗∗∗

(9.74) (9.70) (9.71) (9.74) (9.70) (9.70)
MOM -0.037∗∗∗ -0.036∗∗∗ -0.036∗∗∗ -0.037∗∗∗ -0.036∗∗∗ -0.036∗∗∗

(-7.34) (-7.29) (-7.31) (-7.35) (-7.30) (-7.31)
Constant 0.000∗∗ 0.000∗∗ 0.000∗∗ 0.000∗∗ 0.000∗∗ 0.000∗∗

(2.46) (1.97) (1.97) (2.46) (2.03) (2.04)
Industry FE N N N Y Y Y
Obs 1,807,468 1,807,468 1,807,468 1,807,263 1,807,263 1,807,263
R-squared 0.075 0.075 0.075 0.075 0.075 0.075
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Table 5. Cross-Sectional Variation in Return Comovement

This table presents the results of the following daily regressions, as well as their corresponding t-statistics clustered by calendar
day:

Ri,d = α0 + β1DSRET i,d + γ′F d + εi,d,

where Ri,d is the excess return of stock i on day d, and DSRET i,d is the (equal-weighted) excess return of stock i’s data-sharing
portfolio. Vector F stacks the Fama-French-Carhart (FFC) four factors. We further replace DSRET with ResidualDSRET
(Models 2 and 5) and include industry fixed effects (Models 3 and 6). In Panel A, Models 1 to 3 and Models 4 to 6 report
results for subsamples of firms in consumer-related industries and other industries, respectively. In Panel B, Models 1 to 3 and
Models 4 to 6 report results for subsamples of firms adopting high-frequency cookies and low-frequency cookies, respectively.
Numbers with “*”, “**”, and “***” are significant at the 10%, 5%, and 1% levels, respectively.

Panel A: Subsamples by Industry Classification
Consumer-Related Industries Other Industries

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

DSRET 0.427∗∗∗ 0.427∗∗∗ 0.180∗∗∗ 0.180∗∗∗

(20.29) (20.35) (10.19) (10.16)
ResidualDSRET 0.410∗∗∗ 0.185∗∗∗

(19.73) (10.40)
MKT 0.481∗∗∗ 0.864∗∗∗ 0.481∗∗∗ 0.771∗∗∗ 0.932∗∗∗ 0.771∗∗∗

(24.50) (167.46) (24.56) (41.84) (123.15) (41.77)
SMB 0.331∗∗∗ 0.605∗∗∗ 0.331∗∗∗ 0.598∗∗∗ 0.714∗∗∗ 0.598∗∗∗

(20.36) (68.52) (20.38) (37.60) (58.88) (37.58)
HML 0.211∗∗∗ 0.268∗∗∗ 0.211∗∗∗ -0.025∗ -0.001 -0.025∗

(18.26) (24.10) (18.26) (-1.96) (-0.08) (-1.96)
MOM 0.051∗∗∗ 0.041∗∗∗ 0.052∗∗∗ -0.144∗∗∗ -0.149∗∗∗ -0.145∗∗∗

(7.51) (5.66) (7.51) (-15.67) (-16.28) (-15.68)
Constant 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ -0.000 0.000 -0.000

(2.78) (3.61) (2.78) (-0.03) (0.26) (-0.03)
Industry FE N N Y N N Y
Obs 965,834 965,834 965,834 861,428 861,428 861,223
R-squared 0.087 0.086 0.087 0.068 0.068 0.068
Panel B: Subsamples by Cookie Adoption

High-Frequency Cookies Low-Frequency Cookies
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

DSRET 0.551∗∗∗ 0.551∗∗∗ 0.175∗∗∗ 0.175∗∗∗

(24.29) (24.29) (17.17) (17.13)
ResidualDSRET 0.540∗∗∗ 0.174∗∗∗

(23.97) (17.14)
MKT 0.396∗∗∗ 0.890∗∗∗ 0.396∗∗∗ 0.767∗∗∗ 0.929∗∗∗ 0.767∗∗∗

(18.81) (304.41) (18.82) (74.15) (205.22) (74.04)
SMB 0.293∗∗∗ 0.642∗∗∗ 0.293∗∗∗ 0.547∗∗∗ 0.663∗∗∗ 0.547∗∗∗

(19.65) (138.75) (19.64) (53.29) (84.74) (53.24)
HML 0.067∗∗∗ 0.142∗∗∗ 0.067∗∗∗ 0.124∗∗∗ 0.146∗∗∗ 0.124∗∗∗

(11.04) (27.48) (11.04) (15.06) (18.25) (15.05)
MOM -0.024∗∗∗ -0.036∗∗∗ -0.024∗∗∗ -0.034∗∗∗ -0.040∗∗∗ -0.034∗∗∗

(-6.84) (-9.56) (-6.82) (-5.38) (-6.26) (-5.39)
Constant 0.000∗∗ 0.000∗∗∗ 0.000∗∗ 0.000∗∗ 0.000∗∗ 0.000∗∗

(2.25) (4.29) (2.25) (1.98) (2.50) (1.98)
Industry FE N N Y N N Y
Obs 1,621,843 1,621,843 1,621,807 1,051,707 1,051,707 1,051,502
R-squared 0.076 0.076 0.076 0.095 0.095 0.095
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Table 6. Pairwise Return Comovement and Data Sharing

This table presents the results of the following monthly Fama-MacBeth regressions, as well as their corresponding Newey-West adjusted t-statistics:

ARCORRij,t = α0 + β1DSij,t−1 + γ′N ij,t−1 + εij,t,

where ARCORRij,t is the correlation of daily Fama-French-Carhart four-factor abnormal returns between stocks i and j in month t. DSij,t−1 refers to a list of data sharing
variables for each stock pair: NUMTP is the number of common third-party cookies; LOGNUMTP is the logarithm of (1+NUMTP); %NUMTP is defined as NUMTP divided by
the total number of third-party cookies from the stock pair; and DNUMTP is a dummy variable that equals 1 if NUMTP > 0 and 0 otherwise. Vector N stacks all other control
variables for each stock pair, including FCAP, NUMANA, SAMESIZE, SAMEBM, SAMEMOM, NUMSIC, SIZE1, SIZE2, and SIZE1 × SIZE2. We also include additional pair
controls, including RETCORR, ROECORR, VOLCORR, DIFFGROWTH, DIFFLEV, DIFFPRICE, DSTATE, DINDEX, and DLISTING, as well as style controls, including
SAMESIZE2, SAMESIZE3, BM1, BM2, BM1 × BM2, SAMEBM2, SAMEBM3, MOM1, MOM2, MOM1 × MOM2, SAMEMOM2, and SAMEMOM3. Appendix A
provides a detailed definition of each variable. Numbers with “*”, “**”, and “***” are significant at the 10%, 5%, and 1% levels, respectively.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10
NUMTP 0.185*** 0.108*** 0.123*** 0.125***

(11.75) (8.26) (8.27) (8.33)
LOGNUMTP 0.356*** 0.358***

(7.78) (7.83)
%NUMTP 1.461*** 1.416***

(7.85) (7.63)
DNUMTP 0.277*** 0.279***

(6.78) (6.88)
FCAP 0.444*** -0.201* 0.514*** -0.209* 0.508*** -0.191* 0.524*** -0.195* 0.521***

(3.20) (-1.79) (5.39) (-1.87) (5.30) (-1.72) (5.56) (-1.76) (5.50)
NUMANA 3.595*** 3.536*** 3.516*** 3.536*** 3.516*** 3.540*** 3.520*** 3.540*** 3.520***

(40.95) (41.21) (41.50) (41.21) (41.50) (41.24) (41.53) (41.21) (41.50)
SAMESIZE 1.936*** 1.264*** 6.573*** 1.263*** 6.566*** 1.271*** 6.579*** 1.262*** 6.570***

(14.33) (6.92) (13.70) (6.89) (13.68) (7.01) (13.72) (6.91) (13.69)
SAMEBM -0.030 -0.244*** 2.683*** -0.247*** 2.674*** -0.256*** 2.680*** -0.251*** 2.673***

(-0.48) (-3.30) (7.64) (-3.33) (7.63) (-3.45) (7.61) (-3.39) (7.62)
SAMEMOM 0.892*** 0.606*** 1.760*** 0.603*** 1.763*** 0.605*** 1.757*** 0.604*** 1.762***

(10.56) (6.43) (4.95) (6.41) (4.95) (6.42) (4.94) (6.42) (4.94)
NUMSIC 1.696*** 1.785*** 1.773*** 1.783*** 1.771*** 1.791*** 1.779*** 1.789*** 1.777***

(17.48) (17.26) (17.16) (17.28) (17.18) (17.23) (17.13) (17.25) (17.14)
SIZE1 0.267 -0.297 -3.101*** -0.305 -3.108*** -0.254 -3.038*** -0.294 -3.091***

(0.86) (-0.83) (-7.23) (-0.85) (-7.25) (-0.71) (-7.04) (-0.82) (-7.19)
SIZE2 0.164 -0.367 -3.135*** -0.377 -3.142*** -0.333 -3.081*** -0.372 -3.131***

(0.55) (-1.09) (-7.64) (-1.12) (-7.65) (-0.99) (-7.46) (-1.10) (-7.61)
SIZE1 × SIZE2 -0.907 -0.865 3.654*** -0.861 3.658*** -0.877 3.607*** -0.831 3.675***

(-1.52) (-1.22) (4.40) (-1.22) (4.40) (-1.24) (4.32) (-1.18) (4.42)
RETCORR 5.216*** 5.379*** 5.219*** 5.381*** 5.205*** 5.370*** 5.215*** 5.378***

(18.63) (19.31) (18.61) (19.29) (18.68) (19.36) (18.63) (19.31)
ROECORR 0.261*** 0.274*** 0.261*** 0.274*** 0.263*** 0.276*** 0.263*** 0.275***

(8.20) (9.67) (8.21) (9.67) (8.19) (9.65) (8.20) (9.66)
VOLCORR 0.531*** 0.495*** 0.534*** 0.498*** 0.528*** 0.493*** 0.533*** 0.497***

(10.39) (9.85) (10.48) (9.94) (10.34) (9.81) (10.45) (9.91)
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Table 6 – Continued

DIFFGROWTH -0.220*** -0.203*** -0.219*** -0.203*** -0.225*** -0.209*** -0.221*** -0.205***
(-5.47) (-5.10) (-5.48) (-5.12) (-5.59) (-5.21) (-5.54) (-5.16)

DIFFLEV -0.055*** -0.048*** -0.056*** -0.048*** -0.054*** -0.046*** -0.055*** -0.047***
(-7.91) (-6.00) (-8.07) (-6.15) (-7.58) (-5.71) (-7.85) (-5.94)

DIFFPRICE -0.103*** -0.184*** -0.105*** -0.185*** -0.106*** -0.187*** -0.105*** -0.186***
(-6.18) (-10.70) (-6.20) (-10.71) (-6.22) (-10.68) (-6.19) (-10.68)

DSTATE 0.036 0.018 0.036 0.018 0.031 0.012 0.033 0.014
(1.22) (0.60) (1.22) (0.60) (1.03) (0.39) (1.09) (0.46)

DINDEX -0.278*** -1.104*** -0.279*** -1.105*** -0.275*** -1.097*** -0.272*** -1.097***
(-2.95) (-10.27) (-2.95) (-10.27) (-2.91) (-10.22) (-2.89) (-10.21)

DLISTING 0.391*** 0.405*** 0.389*** 0.403*** 0.394*** 0.408*** 0.391*** 0.405***
(9.23) (9.59) (9.20) (9.56) (9.27) (9.64) (9.22) (9.58)

SAMESIZE2 9.601*** 9.578*** 9.618*** 9.596***
(9.05) (9.03) (9.07) (9.05)

SAMESIZE3 1.322 1.301 1.365 1.323
(1.59) (1.56) (1.64) (1.59)

BM1 1.074*** 1.063*** 1.004*** 1.030***
(4.73) (4.68) (4.47) (4.57)

BM2 1.042*** 1.037*** 0.973*** 1.004***
(4.39) (4.37) (4.16) (4.26)

BM1 × BM2 -2.854*** -2.832*** -2.715*** -2.768***
(-5.94) (-5.91) (-5.74) (-5.82)

SAMEBM2 5.053*** 5.035*** 5.100*** 5.058***
(5.35) (5.34) (5.36) (5.34)

SAMEBM3 3.239*** 3.214*** 3.218*** 3.205***
(4.33) (4.31) (4.29) (4.29)

MOM1 2.587*** 2.576*** 2.588*** 2.586***
(7.21) (7.19) (7.28) (7.24)

MOM2 2.627*** 2.617*** 2.628*** 2.627***
(7.35) (7.33) (7.44) (7.39)

MOM1 × MOM2 -4.938*** -4.915*** -4.939*** -4.935***
(-6.52) (-6.50) (-6.58) (-6.55)

SAMEMOM2 -2.767*** -2.745*** -2.776*** -2.761***
(-2.70) (-2.68) (-2.71) (-2.69)

SAMEMOM3 -3.520*** -3.513*** -3.528*** -3.519***
(-4.63) (-4.62) (-4.64) (-4.61)

Constant 0.208*** 0.479** 0.252 1.280*** 0.220 1.253*** 0.229 1.279*** 0.221 1.261***
(9.20) (2.52) (1.17) (4.04) (1.02) (3.95) (1.06) (4.03) (1.02) (3.96)

Obs 78,757,999 78,757,999 54,787,691 54,787,691 54,787,691 54,787,691 54,787,691 54,787,691 54,787,691 54,787,691
R-squared 0.000 0.007 0.010 0.011 0.010 0.011 0.010 0.011 0.010 0.011
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Table 7. EDGAR Search Comovement and Data Sharing

This table presents the results of the following daily regressions, as well as their corresponding t-statistics clustered by calendar
day:

HUM i,d = α0 + β1DSHUM i,d + β2DSROBi,d + β3MKTHUMd + β4MKTROBd + εi,d,

where HUM i,d is the number of page views from human readers (i.e., human search) of stock i on day d; DSHUM i,d

and DSROBi,d are the (equal-weighted) number of human searches and robot searches of stock i’s data-sharing portfolio,
respectively; and MKTHUMd and MKTROBd are the (equal-weighted) number of human searches and robot searches of the
market portfolio, respectively. We further include industry fixed effects (Models 3-4). Appendix A provides a detailed definition
of each variable. Numbers with “*”, “**”, and “***” are significant at the 10%, 5%, and 1% levels, respectively.

Model 1 Model 2 Model 3 Model 4
DSHUM 0.801∗∗∗ 0.717∗∗∗ 0.731∗∗∗ 0.707∗∗∗

(25.79) (14.67) (22.32) (14.51)
DSROB 0.021∗∗∗ 0.006

(3.10) (0.86)
MKTHUM 0.209∗∗∗ 0.293∗∗∗ 0.302∗∗∗ 0.315∗∗∗

(5.72) (5.18) (7.72) (5.57)
MKTROB -0.026∗∗∗ -0.004

(-2.94) (-0.46)
Constant 0.430∗∗ 0.318 0.611∗∗∗ -0.134

(2.51) (1.26) (3.17) (-0.52)
Industry FE N N Y Y
Obs 1,579,559 1,579,559 1,562,221 1,562,221
R-squared 0.013 0.013 0.207 0.207
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Table 8. Comovement in Retail Trading

This table presents the results of the following daily regressions, as well as their corresponding t-statistics clustered by calendar
day:

TRAi,d = α0 + β1DSTRAi,d + β2MKTTRAd + εi,d,

where TRAi,d refers to a set of retail trading proxies of stock i on day d, including the retail order imbalance of share
volume (OIBVOL, Models 1-4), the change in the number of Robinhood users (RHNUM, Models 5-6), and the percentage
change in the number of Robinhood users (RHPCT, Models 7-8). DSTRAi,d and MKTTRAd are the (equal-weighted) retail
trading measures of stock i’s data-sharing portfolio and the market portfolio, respectively. We further replace DSOIBVOL with
DSOIBVOL+ (which equals DSOIBVOL if DSOIBVOL > 0 and 0 otherwise) and DSOIBVOL− (which equals DSOIBVOL
if DSOIBVOL < 0 and 0 otherwise) (Models 2 and 4) and include industry fixed effects (Models 3-4, 6, and 8). Appendix A
provides a detailed definition of each variable. Numbers with “*”, “**”, and “***” are significant at the 10%, 5%, and 1%
levels, respectively.

OIBVOL RHNUM RHPCT
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

DSOIBVOL 0.086∗∗∗ 0.088∗∗∗

(8.00) (8.25)
DSOIBVOL+ 0.117∗∗∗ 0.130∗∗∗

(5.79) (6.05)
DSOIBVOL− 0.059∗∗∗ 0.053∗∗∗

(3.71) (3.03)
MKTOIBVOL 0.967∗∗∗ 0.969∗∗∗ 0.965∗∗∗ 0.968∗∗∗

(37.51) (37.91) (37.31) (37.86)
DSRHNUM 0.392∗∗∗ 0.372∗∗∗

(5.40) (5.15)
DSRHPCT 0.086∗ 0.084∗

(1.80) (1.80)
MKTRHNUM 1.168∗∗∗ 1.229∗∗∗

(8.25) (8.61)
MKTRHPCT 0.207 0.206

(1.46) (1.45)
Constant -0.011∗∗∗ -0.011∗∗∗ -0.010∗∗∗ -0.011∗∗∗ -0.854∗ -1.045∗∗ 0.004∗∗∗ 0.004∗∗∗

(-29.71) (-27.86) (-29.27) (-26.51) (-1.81) (-2.12) (4.48) (4.46)
Industry FE N N Y Y N Y N Y
Obs 2,532,805 2,532,805 2,506,883 2,506,883 919,320 907,768 917,642 906,193
R-squared 0.003 0.003 0.004 0.004 0.008 0.025 0.000 0.001
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Table 9. Pairwise Return Comovement, Data Sharing, and Investor Behavior

This table presents the results of the following monthly Fama-MacBeth regressions, as well as their corresponding Newey-West adjusted t-statistics:

ARCORRij,t = α0 + β1NUMTPij,t−1 + β2NUMTPij,t−1 × IBCORRij,t−1 + β3IBCORRij,t−1 + γ′N ij,t−1 + εij,t,

where ARCORRij,t is the correlation of the daily Fama-French-Carhart four-factor abnormal returns between stocks i and j in month t and NUMTPij,t−1 is the number of
common third-party cookies. IBCORRij,t−1 refers to a set of variables indicating correlations in investor behavior, including correlations in the daily EDGAR searches by
humans (HUMCORR) and by robots (ROBCORR) (Models 1-2), the correlation in daily retail order imbalances of share volume (OIBVOLCORR, Models 3-4), the percentages
of common retail buys (POSOIBVOL) and retail sells (NEGOIBVOL) (Models 5-6), and correlations in the daily change in the number of Robinhood users (RHNUMCORR,
Models 7-8) and in daily percentage change in the number of Robinhood users (RHPCTCORR, Models 9-10). Vector N stacks all other control variables for each stock
pair, including FCAP, NUMANA, SAMESIZE, SAMEBM, SAMEMOM, NUMSIC, SIZE1, SIZE2, and SIZE1 × SIZE2. We also include additional pair controls, including
RETCORR, ROECORR, VOLCORR, DIFFGROWTH, DIFFLEV, DIFFPRICE, DSTATE, DINDEX, and DLISTING, as well as style controls, including SAMESIZE2,
SAMESIZE3, BM1, BM2, BM1 × BM2, SAMEBM2, SAMEBM3, MOM1, MOM2, MOM1 × MOM2, SAMEMOM2, and SAMEMOM3. Appendix A provides a detailed
definition of each variable. Only the main variables are tabulated for brevity. Numbers with “*”, “**”, and “***” are significant at the 10%, 5%, and 1% levels, respectively.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10
NUMTP 0.067** 0.078** 0.133*** 0.134*** 0.121*** 0.123*** 0.124*** 0.125*** 0.123*** 0.124***

(2.27) (2.73) (8.54) (8.45) (6.69) (6.74) (5.34) (5.49) (5.43) (5.58)
NUMTP × HUMCORR 0.142*** 0.115***

(3.22) (2.81)
NUMTP × ROBCORR -0.014 -0.017

(-0.57) (-0.68)
NUMTP × OIBVOLCORR 0.032** 0.031**

(2.39) (2.30)
NUMTP × POSOIBVOL 0.102** 0.091**

(2.29) (2.06)
NUMTP × NEGOIBVOL -0.054 -0.050

(-1.62) (-1.47)
NUMTP × RHNUMCORR 0.064*** 0.063***

(3.44) (3.45)
NUMTP × RHPCTCORR 0.066*** 0.065***

(3.51) (3.53)
HUMCORR -0.098 -0.054

(-1.39) (-0.77)
ROBCORR 0.110*** 0.107***

(2.96) (2.98)
OIBVOLCORR 0.009 0.007

(0.43) (0.32)
POSOIBVOL -0.123 -0.068

(-1.13) (-0.67)
NEGOIBVOL 0.305*** 0.266***

(3.46) (3.09)
RHNUMCORR 0.056* 0.058*

(1.90) (1.97)
RHPCTCORR 0.057* 0.058*

(1.89) (1.96)
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Table 9 – Continued

FCAP -0.090 0.465*** -0.181* 0.449*** -0.181* 0.449*** -0.516** 0.410* -0.517** 0.407*
(-0.94) (4.99) (-1.78) (4.90) (-1.78) (4.91) (-2.31) (1.84) (-2.32) (1.83)

NUMANA 3.630*** 3.608*** 3.430*** 3.412*** 3.430*** 3.412*** 3.504*** 3.484*** 3.504*** 3.485***
(43.25) (42.77) (41.43) (41.70) (41.47) (41.74) (19.49) (19.47) (19.50) (19.49)

SAMESIZE 1.005*** 6.643*** 1.142*** 6.256*** 1.147*** 6.256*** 1.176*** 5.832*** 1.176*** 5.821***
(5.08) (8.57) (6.41) (13.15) (6.46) (13.17) (4.92) (7.78) (4.92) (7.80)

SAMEBM -0.413*** 2.683*** -0.210** 2.842*** -0.212*** 2.835*** -0.066 2.691*** -0.067 2.696***
(-5.68) (4.33) (-2.65) (7.75) (-2.68) (7.78) (-0.40) (7.11) (-0.40) (7.24)

SAMEMOM 0.546*** 1.362*** 0.654*** 2.047*** 0.651*** 2.048*** 0.528** 2.840*** 0.532*** 2.835***
(5.41) (3.08) (6.81) (5.44) (6.78) (5.45) (2.87) (4.28) (2.91) (4.29)

NUMSIC 1.742*** 1.737*** 1.996*** 1.984*** 1.996*** 1.984*** 1.946*** 1.928*** 1.945*** 1.927***
(12.66) (12.38) (17.20) (17.09) (17.23) (17.12) (9.72) (9.68) (9.69) (9.65)

SIZE1 -0.241 -2.802*** -0.377 -3.225*** -0.362 -3.207*** -1.094* -4.386*** -1.100* -4.392***
(-0.86) (-9.33) (-1.00) (-7.26) (-0.96) (-7.19) (-1.86) (-5.14) (-1.87) (-5.15)

SIZE2 -0.231 -2.756*** -0.453 -3.281*** -0.438 -3.263*** -1.191** -4.472*** -1.204** -4.483***
(-0.89) (-10.63) (-1.31) (-7.84) (-1.26) (-7.76) (-2.10) (-5.31) (-2.12) (-5.33)

SIZE1 × SIZE2 -1.168** 2.952*** -0.741 3.863*** -0.750 3.847*** 0.969 6.223*** 0.988 6.240***
(-2.41) (5.38) (-1.02) (4.58) (-1.03) (4.54) (0.76) (3.68) (0.78) (3.69)

Constant -0.211 0.865*** 0.248 1.219*** 0.185 1.164*** 0.787* 2.194*** 0.793* 2.200***
(-1.31) (2.88) (1.13) (3.82) (0.84) (3.71) (1.88) (3.86) (1.89) (3.87)

Pair Controls Y Y Y Y Y Y Y Y Y Y
Style Controls N Y N Y N Y N Y N Y
Obs 26,722,883 26,722,883 50,069,021 50,069,021 50,069,021 50,069,021 15,353,003 15,353,003 15,344,069 15,344,069
R-squared 0.010 0.010 0.011 0.012 0.011 0.012 0.013 0.013 0.013 0.013
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Table 10. Stock Returns Sorted by Own Return and Data-Sharing Portfolio Return

At the end of day d, stocks are independently sorted into quintiles according to their own returns and data-sharing portfolio returns to generate 25 (5 × 5) portfolios. The low-
(high)-own-return and data-sharing-portfolio-return portfolios comprise the bottom (top) quintile of stocks based on the own return and data-sharing portfolio return, respectively.
The data-sharing portfolio return is the average return of all stocks with common third-party cookies, weighted by the number of common third-party cookies. Panel A reports the
equal-weighted return on day d+1 for each of the 25 portfolios, the investment strategy of going long (short) the low- (high)-own-return stocks (“LMH”), and the investment strategy of
going long (short) the high- (low)-data-sharing-portfolio-return stocks (“HML”). “HL − LH” reports returns for the investment strategy of going long the high-data-sharing-portfolio-
return and low-own-return stocks and short the low-data-sharing-portfolio-return and high-own-return stocks. Portfolio returns are further adjusted by a five-factor model including the
Fama-French-Carhart four factors and the short-term reversal factor. Panel B focuses on five factor-adjusted returns and reports similar statistics for alternative holding periods from
day d + 1 to d + 5 and day d + 1 to d + 10. Newey-West adjusted t-statistics are shown in parentheses. Numbers with “*”, “**”, and “***” are significant at the 10%, 5%, and 1%
levels, respectively.

Panel A: Returns to Investment Strategies Sorted by Own Return and Data-Sharing Portfolio Return (1-Day)
Return Five factor-adjusted Return

Own Return Data-Sharing Portfolio Return Data-Sharing Portfolio Return
Low 2 3 4 High HML Low 2 3 4 High HML

Low 0.140*** 0.152*** 0.155*** 0.186*** 0.166*** 0.027 0.098*** 0.111*** 0.115*** 0.144*** 0.125*** 0.027
(3.89) (4.35) (4.76) (5.57) (4.77) (1.44) (5.48) (6.57) (7.56) (9.19) (7.32) (1.45)

2 0.040 0.061** 0.059** 0.057** 0.042 0.002 0.004 0.023** 0.021*** 0.020** 0.005 0.001
(1.52) (2.33) (2.27) (2.12) (1.52) (0.17) (0.40) (2.53) (2.64) (2.22) (0.52) (0.13)

3 0.035 0.043* 0.031 0.040 0.049** 0.014 0.002 0.008 -0.004 0.005 0.015** 0.013
(1.46) (1.73) (1.24) (1.58) (1.97) (1.29) (0.27) (1.12) (-0.56) (0.56) (2.06) (1.13)

4 0.018 0.024 0.028 0.033 0.026 0.008 -0.015* -0.009 -0.004 0.000 -0.006 0.010
(0.68) (0.94) (1.09) (1.30) (1.00) (0.84) (-1.91) (-1.05) (-0.54) (0.03) (-0.66) (0.95)

High -0.114*** -0.095*** -0.070** -0.069** -0.057 0.057*** -0.144*** -0.126*** -0.100*** -0.099*** -0.084*** 0.059***
(-3.09) (-2.96) (-2.15) (-2.05) (-1.58) (3.12) (-8.18) (-7.68) (-7.22) (-6.31) (-4.67) (3.22)

LMH 0.253*** 0.247*** 0.226*** 0.255*** 0.223*** 0.280*** HL − LH 0.242*** 0.237*** 0.215*** 0.243*** 0.209*** 0.268*** HL − LH
(10.57) (10.65) (10.82) (11.39) (8.58) (12.34) (10.10) (10.36) (10.23) (10.91) (8.33) (11.88)

Panel B: Five Factor-adjusted Returns to Investment Strategies Sorted by Own Return and Data-Sharing Portfolio Return (5-Day and 10-Day)
5-Day 10-Day

Own Return Data-Sharing Portfolio Return Data-Sharing Portfolio Return
Low 2 3 4 High HML Low 2 3 4 High HML

Low 0.018 0.029*** 0.030*** 0.039*** 0.029** 0.011 0.015 0.020** 0.018** 0.019** 0.019* 0.004
(1.44) (3.02) (3.12) (4.01) (2.45) (1.33) (1.23) (2.23) (2.16) (2.16) (1.72) (0.72)

2 0.000 0.011** 0.010** 0.013*** 0.003 0.002 0.004 0.011** 0.008** 0.007* 0.003 -0.001
(0.04) (2.22) (1.97) (2.66) (0.43) (0.47) (0.71) (2.55) (2.02) (1.78) (0.53) (-0.21)

3 0.007 0.005 0.003 0.010** 0.007 -0.000 0.008* 0.010*** 0.007* 0.009** 0.005 -0.003
(1.46) (1.26) (0.81) (2.20) (1.39) (-0.09) (1.87) (2.71) (1.83) (2.32) (1.04) (-1.00)

4 -0.005 0.007 0.003 0.008 0.006 0.010** 0.002 0.006 0.003 0.004 0.006 0.004
(-0.88) (1.41) (0.69) (1.64) (1.11) (2.18) (0.42) (1.57) (0.75) (1.07) (1.32) (1.03)

High -0.032*** -0.028*** -0.021** -0.013 -0.019* 0.013* -0.021** -0.015* -0.008 -0.006 -0.013 0.008
(-2.91) (-3.10) (-2.43) (-1.53) (-1.85) (1.70) (-2.12) (-1.83) (-1.11) (-0.85) (-1.39) (1.47)

LMH 0.050*** 0.058*** 0.051*** 0.053*** 0.048*** 0.061*** HL − LH 0.036*** 0.034*** 0.026*** 0.025*** 0.032*** 0.040*** HL − LH
(4.80) (6.18) (5.18) (5.33) (4.57) (6.22) (5.02) (5.51) (4.03) (4.20) (4.29) (5.66)
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Table 11. Cash Flow Comovement in the Long Term

This table presents the results of the following annual panel regressions with year fixed effects and the corresponding t-statistics
with standard errors clustered at the stock level:

Chari,y = α0 + β1DSChari,y + γ′Ci,y + εi,y ,

where Chari,y is a list of firm characteristics of stock i in year y: Adv is the advertising expenditures scaled by total assets
(Models 1 and 4); SALE is the sales scaled by total assets (Models 2 and 5); and RD is the R&D expenses scaled by total assets
(Models 3 and 6). DSChari,y represents the (equal-weighted) firm characteristics of stock i’s data-sharing portfolio. Vector
C stacks all other control variables, including M2B, Tangibility, TotalAsset, CR, Coverage, Zscore, and Leverage. We further
include industry fixed effects (Models 4-6). Appendix A provides a detailed definition of each variable. Numbers with “*”,
“**”, and “***” are significant at the 10%, 5%, and 1% levels, respectively.

Advertising Sales R&D Advertising Sales R&D
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

DSAdv 0.454∗ 0.133
(1.84) (0.53)

DSSALE 0.095∗∗ 0.033
(2.22) (0.85)

DSRD 0.162 -0.021
(0.83) (-0.11)

M2B 0.003∗∗∗ 0.001 0.009∗∗∗ 0.003∗∗∗ 0.001 0.009∗∗∗

(4.25) (0.65) (18.72) (4.09) (1.23) (17.37)
Tangibility 0.011 -0.763∗∗∗ -0.091∗∗∗ 0.007 -0.376∗∗∗ -0.039

(1.23) (-7.52) (-5.62) (0.60) (-2.67) (-1.57)
TotalAsset -0.003∗∗ 0.938∗∗∗ -0.012∗∗∗ -0.002∗∗ 0.945∗∗∗ -0.012∗∗∗

(-2.46) (83.38) (-5.17) (-2.06) (85.14) (-4.75)
CR -0.001 -0.080∗∗∗ -0.000 -0.001 -0.066∗∗∗ -0.002

(-1.60) (-6.40) (-0.15) (-1.21) (-6.06) (-1.50)
Coverage -0.002 0.247∗∗∗ -0.022∗∗∗ -0.004∗ 0.184∗∗∗ -0.018∗∗∗

(-0.95) (14.55) (-9.79) (-1.89) (12.99) (-8.21)
Zscore 0.000 0.000 -0.001 0.000 0.000 -0.001

(0.11) (0.25) (-1.22) (0.11) (0.03) (-1.21)
Leverage -0.027∗∗ 0.446∗∗∗ -0.089∗∗∗ -0.026∗∗ 0.424∗∗∗ -0.097∗∗∗

(-2.40) (3.71) (-3.41) (-2.30) (3.73) (-3.52)
Constant 0.040∗∗∗ -0.860∗∗∗ 0.204∗∗∗ 0.017 -0.821∗∗∗ 0.144∗∗∗

(2.66) (-3.07) (7.79) (0.92) (-2.75) (6.31)
Year FE Y Y Y Y Y Y
Industry FE N N N Y Y Y
Obs 2,838 7,002 4,216 2,838 7,002 4,216
R-squared 0.446 0.879 0.367 0.484 0.908 0.392
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Appendices

A. Variable Definitions

Variables Definitions
Panel A. Stock and Data-Sharing Portfolio Characteristics
Ntpcookie The number of unique third-party cookie platforms adopted by the firm.
DSRET The daily return of the data-sharing portfolio.
HUM The daily EDGAR page views corresponding to human readers.
DSHUM The daily EDGAR page views corresponding to human readers of the data-sharing portfolio.
ROB The daily EDGAR page views corresponding to automated machine downloads (i.e., robots).
DSROB The daily EDGAR page views corresponding to robots of the data-sharing portfolio.
OIBVOL The retail order imbalance for share volume for stock i on day d is computed as follows: OIBV OLi,d =

BV OLi,d−SV OLi,d

BV OLi,d+SV OLi,d
, where BV OLi,d and SV OLi,d are the buy and sell volume from marketable retail orders,

respectively, following Boehmer et al. (2021).
DSOIBVOL The daily retail order imbalance of the share volume of the data-sharing portfolio.
DSOIBVOL+ A variable that equals DSOIBVOL if DSOIBVOL > 0 and 0 otherwise.
DSOIBVOL− A variable that equals DSOIBVOL if DSOIBVOL < 0 and 0 otherwise.
MKTOIBVOL The daily retail order imbalance of the share volume of the market portfolio.
RHNUM The change in the number of Robinhood users corresponding to stock i on day d is computed as follows:

RHNUM i,d = useri,d − useri,d−1, where useri,d is the last observed Robinhood user count prior to the close
of trading (4 pm ET), following Barber et al. (2021).

DSRHNUM The daily change in the number of Robinhood users corresponding to the data-sharing portfolio.
MKTRHNUM The daily change in the number of Robinhood users corresponding to the market portfolio.
RHPCT The percentage change in the number of Robinhood users holding stock i on day d is computed as follows:

RHPCT i,d =
useri,d

useri,d−1
− 1, where useri,d is defined as in RHNUM, following Barber et al. (2021).

DSRHPCT The daily percentage change in the number of Robinhood users corresponding to the data-sharing portfolio.
MKTRHPCT The daily percentage change in the number of Robinhood users corresponding to the market portfolio.
Adv Advertising expenditures scaled by total assets.
DSAdv The Adv (advertising expenditures scaled by total assets) of the data-sharing portfolio.
SALE Sales scaled by total assets.
DSSALE The SALE (sales scaled by total assets) of the data-sharing portfolio.
RD R&D expenses scaled by total assets.
DSRD The RD (R&D expenses scaled by total assets) of the data-sharing portfolio.
M2B The market value of equity plus the book value of debt scaled by total assets.
Tangibility Net property, plant and equipment scaled by total assets.
TotalAsset The logarithm of total assets.
CR Current assets scaled by current liabilities.
Coverage EBIT scaled by interest payments on debt.
Zscore 1.2 × working capital / total assets + 1.4 × retained earnings / total assets + 3.3 × EBIT / total assets + 0.6

× market value of equity / total liabilities + 1.0 × sales / total assets, following Altman (1968).
Leverage Long term debt plus debt in current liabilities scaled by the total assets.
Panel B. Stock Pair Characteristics
ARCORR The correlation of a stock pair’s daily four-factor abnormal return in a month, in percentage. The abnormal

return is computed as the realized stock return minus the product of a stock’s four-factor betas and the
realized four-factor returns. The four-factor model consists of Fama and French (1993) and Carhart (1997)
factors (market, size, book-to-market, and momentum). The betas of the fund are estimated as the exposures
of the stock to the relevant risk factors using daily data in a given month.

HUMCORR The correlation of a stock pair’s daily EDGAR search by humans (i.e., HUM defined above) in a month.
ROBCORR The correlation of a stock pair’s daily EDGAR search by robots (i.e., ROB defined above) in a month.
OIBVOLCORR The correlation of a stock pair’s daily retail order imbalance of share volume (i.e., OIBVOL defined above) in

a month.
POSOIBVOL The percentage of common retail buys between a stock pair, defined as the number of days that both stocks

have positive retail order imbalances of share volume (i.e., OIBVOL defined above) divided by the number of
trading days in a month.

NEGOIBVOL The percentage of common retail sells between a stock pair, defined as the number of days that both stocks
have negative retail order imbalances of share volume (i.e., OIBVOL defined above) divided by the number of
trading days in a month.

RHNUMCORR The correlation of a stock pair’s daily change in the number of Robinhood users (i.e., RHNUM defined above)
during a month.
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Appendix A – Continued

RHPCTCORR The correlation of a stock pair’s daily percentage change in the number of Robinhood users (i.e., RHPCT
defined above) during a month.

NUMTP The number of common third-party cookies shared between a stock pair.
LOGNUMTP The logarithm of one plus the number of common third-party cookies shared between a stock pair.
%NUMTP The percentage number of common third-party cookies shared between a stock pair in a given month t is

computed as follows: %NUMTP ij,t = 2 × NUMTP ij,t/ (NUMTP i,t +NUMTP j,t), where NUMTP ij,t

is the number of common third-party cookies covered by both stocks i and j in month t and NUMTP i,t

(NUMTP j,t) is the number of third-party cookies covered by stock i (j).
DNUMTP A dummy variable that equals 1 if there exist common third-party cookies between a stock pair and 0 otherwise.
FCAP The common ownership in the two stocks in quarter q is computed as follows: FCAP ij,t =∑F

f=1

(
Sf
i,qPi,q + Sf

j,qPj,q

)
/ (Si,qPi,q + Sj,qPj,q), where Sf

i,q (Sf
j,q) is the number of shares of stock i (j)

held by a common fund f in quarter q, Pi,q (Pj,q) is the price of stock i (j), and Si,q (Sj,q) is the number of
shares outstanding of stock i (j). F indicates the total number of common funds that hold both stocks i and
j in their portfolios.

NUMANA The number of analysts that issued at least one annual earnings forecast for both stocks in the last year.
SIZE The market capitalization of a stock computed as the number of common shares outstanding times share price.

In addition, SIZE1 and SIZE2 are defined as the normalized rank-transform of the percentile SIZE of the two
stocks in a stock pair.

SAMESIZE The negative of the absolute difference in the two stocks’ percentile ranking of SIZE. In addition, SAMESIZE2

and SAMESIZE3 are the square and cube of SAMESIZE, respectively.
BM The book value of equity divided by market capitalization at fiscal year-end. The book value of equity is

computed as the stockholders’ equity (COMPUSTAT annual item SEQ), plus deferred taxes (item TXDB) and
investment tax credit (item ITCB), minus the book value of the preferred stock. Depending on availability, we
use the redemption value (item PSTKRV), liquidation value (item PSTKL), or carrying value (item PSTK) to
estimate the book value of the preferred stock, following Fama and French (1993), and Davis et al. (2000). In
addition, BM1 and BM2 are defined as the normalized rank-transform of the percentile BM of the two stocks
in a stock pair.

SAMEBM The negative of the absolute difference in the two stocks’ percentile ranking of BM. In addition, SAMEBM2

and SAMEBM3 are the square and cube of SAMEBM, respectively.
MOM The past return in a given month t is computed as the cumulative 12-month return from month t−12 to month

t− 1, following Jegadeesh and Titman (1993). In addition, MOM1 and MOM2 are defined as the normalized
rank-transform of the percentile MOM of the two stocks in a stock pair.

SAMEMOM The negative of the absolute difference in the two stocks’ percentile ranking of MOM. In addition,
SAMEMOM2 and SAMEMOM3 are the square and cube of SAMEMOM, respectively.

NUMSIC The number of consecutive SIC digits, beginning with the first digit, that is equal for a stock pair.
RETCORR The correlation of a stock pair’s monthly return in the last five years.
ROECORR The correlation of stock pair’s quarterly return on equity (ROE) in the last five years. ROE is a given quarter

q is computed as follows: ROEi,q = INCOMEi,q/EQUITY i,q−1, where INCOMEi,q is the income before
extraordinary items (COMPUSTAT quarterly item IBQ) of stock i in quarter q and EQUITY i,q−1 is the
shareholders’ equity. Depending on availability, we use stockholders’ equity (item SEQQ), common equity
(item CEQQ) plus redemption value (item PSTKRQ), common equity (item CEQQ) plus the carrying value of
the preferred stock (item PSTKQ), or total assets (item ATQ) minus total liabilities (item LTQ) in that order
as shareholders’ equity, following Hou et al. (2015).

VOLCORR The correlation of a stock pair’s monthly abnormal trading volume in the last five years. The abnormal trading
volume is computed as the residual from a regression of monthly trading volume on annual trend and monthly
dummies with data from the last three years, following Chen et al. (2012).

DIFFGROWTH The absolute difference in the two stocks’ five-year log sales growth rate in year y is computed as follows:
DIFFGROWTHij,y = |log (Salesi,y/Salesi,y−5)− log (Salesj,y/Salesj,y−5)|, where Salesi,y (Salesj,y) is
the sales (COMPUSTAT annual item SALE) of stock i (j) in year y.

DIFFLEV The absolute difference in the two stocks’ financial leverage ratio, defined as long-term debt (COMPUSTAT
quarterly item LTQ) divided by total assets (item ATQ).

DIFFPRICE The absolute difference in the two stocks’ log share price.
DSTATE A dummy variable that equals 1 if the two firms are located in the same state and 0 otherwise.
DINDEX A dummy variable that equals 1 if the two stocks belong to the S&P 500 index and 0 otherwise.
DLISTING A dummy variable that equals 1 if the two stocks are listed on the same stock exchange and 0 otherwise.
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